Skip to main content
Log in

Optimizing Production of Pectinase from Orange Peel by Penicillium oxalicum PJ02 Using Response Surface Methodology

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

A novel strain Penicillium oxalicum PJ02 was isolated for the production of exo-pectinase, endo-pectinase, carboxymethylcellulase (CMCase) and xylanase. Response surface methodology (RSM) was employed to optimize orange peel submerged fermentation for pectinase production. Plackett–Burman factorial design was used to select significant parameters. Temperature and NH4Cl concentration had significant influence on exo-pectinase production. The central composite design was used to generate a total of 22 fermentation experiments. The statistical results indicated that the optimum temperature for exo-pectinase and endo-pectinase production was 36.5 °C, and optimal NH4Cl concentration was 1.12 g/L. Under this condition, the yield of exo-pectinase was 36.88 U/mL, endo-pectinase was 0.62 U/mL, which are in close agreement with the values predicted by the model. The CMCase and xylanase yield in the same medium were 0.38 and 0.57 U/mL, respectively. RSM was also used to analyse the effect of independent variables on CMCase and xylanase production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. USDA: Citrus: world markets and trade. http://www.fas.usda.gov/psdonline/psdHome.aspx (2013)

  2. Laufenberg, G., Kunz, B., Nystroem, M.: Transformation of vegetable waste into value added products:(A) the upgrading concept;(B) practical implementations. Bioresour. Technol. 87(2), 167–198 (2003)

    Article  Google Scholar 

  3. Pfaltzgraff, L.A., Cooper, E.C., Budarin, V., Clark, J.H.: Food waste biomass: a resource for high-value chemicals. Green Chem. 15(2), 307–314 (2013)

    Article  Google Scholar 

  4. Marín, F.R., Soler-Rivas, C., Benavente-García, O., Castillo, J., Pérez-Alvarez, J.A.: By-products from different citrus processes as a source of customized functional fibres. Food Chem. 100(2), 736–741 (2007)

    Article  Google Scholar 

  5. Rocha, N.R.A.F., Barros, M.A., Fischer, J., Coutinho Filho, U., Cardoso, V.L.: Ethanol production from agroindustrial biomass using a crude enzyme complex produced by Aspergillus niger. Renew. Energy 57, 432–435 (2013). doi:10.1016/j.renene.2013.01.053

    Article  Google Scholar 

  6. Rivas-Cantu, R.C., Jones, K.D., Mills, P.L.: A citrus waste-based biorefinery as a source of renewable energy: technical advances and analysis of engineering challenges. Waste Manag. Res. 31(4), 413–420 (2013)

    Article  Google Scholar 

  7. Batool, S., Asad, M.J., Naqvi, S.S., Mahmood, R.T., Guffar, A., Gulfraz, M., Hadri, S.H.: Production and partial purification of pectin lyase by Aspergillus niger grown on orange peels. Afr. J. Microbiol. Res. 7(13), 1144–1149 (2013)

    Google Scholar 

  8. Ahmed, S., Mostafa, F.: Utilization of orange bagasse and molokhia stalk for production of pectinase enzyme. Braz. J. Chem. Eng. 30(3), 449–456 (2013)

    Article  Google Scholar 

  9. Darah, I., Taufiq, M., Lim, S.: Pomelo Citrus grandis (L.) osbeck peel as an economical alternative substrate for fungal pectinase production. Food Sci. Biotechnol. 22(6), 1683–1690 (2013)

    Article  Google Scholar 

  10. Agrawal, R., Satlewal, A., Verma, A.: Production of an extracellular cellobiase in solid state fermentation. J. Mocrobiol. Biotechnol. Food Sci. 2(4), 2339–2350 (2013)

    Google Scholar 

  11. Sharma, A., Shrivastava, A., Sharma, S., Gupta, R., Kuhad, R.C.: Microbial pectinases and their applications. In: Kuhad, R.C., Singh, A. (eds.) Biotechnology for Environmental Management and Resource Recovery, pp. 107–124. Springer, India (2013)

  12. Cavalitto, S.F., Mignone, C.F.: Application of factorial and Doehlert designs for optimization of protopectinase production by a Geotrichum klebahnii strain. Process Biochem. 42(2), 175–179 (2007). doi:10.1016/j.procbio.2006.07.031

    Article  Google Scholar 

  13. Gonçalves, D., Teixeira, J.A., Bazzolli, D.S., de Queiroz, M., de Araújo, E.: Use of response surface methodology to optimize production of pectinases by recombinant Penicillium griseoroseum T20. Biocatal. Agric. Biotechnol. 1, 140–146 (2012)

    Google Scholar 

  14. Garai, D., Kumar, V.: A Box–Behnken design approach for the production of xylanase by Aspergillus candidus under solid state fermentation and its application in saccharification of agro residues and Parthenium hysterophorus L. Ind. Crops Prod. 44, 352–363 (2013)

    Article  Google Scholar 

  15. Sharma, D., Satyanarayana, T.: A marked enhancement in the production of a highly alkaline and thermostable pectinase by Bacillus pumilus dcsr1 in submerged fermentation by using statistical methods. Bioresour. Technol. 97(5), 727–733 (2006)

    Article  Google Scholar 

  16. Das, A., Paul, T., Halder, S.K., Jana, A., Maity, C., Das Mohapatra, P.K., Pati, B.R., Mondal, K.C.: Production of cellulolytic enzymes by Aspergillus fumigatus ABK9 in wheat bran-rice straw mixed substrate and use of cocktail enzymes for deinking of waste office paper pulp. Bioresour. Technol. 128, 290–296 (2013). doi:10.1016/j.biortech.2012.10.080

    Article  Google Scholar 

  17. Coman, G., Bahrim, G.: Optimization of xylanase production by Streptomyces sp. P12-137 using response surface methodology and central composite design. Ann. Microbiol. 61(4), 773–779 (2011)

    Article  Google Scholar 

  18. Teather, R.M., Wood, P.J.: Use of Congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Appl. Environ. Microbiol. 43(4), 777–780 (1982)

    Google Scholar 

  19. Jagtap, S.S., Dhiman, S.S., Kim, T.-S., Li, J., Lee, J.-K., Kang, Y.C.: Enzymatic hydrolysis of aspen biomass into fermentable sugars by using lignocellulases from Armillaria gemina. Bioresour. Technol. 133, 307–314 (2013). doi:10.1016/j.biortech.2013.01.118

    Article  Google Scholar 

  20. Tamura, K., Dudley, J., Nei, M., Kumar, S.: MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24(8), 1596–1599 (2007)

    Article  Google Scholar 

  21. Liu, S.: Analysis and measurement in papermaking industry. China Chemical Industry Press, Beijing (2004)

    Google Scholar 

  22. Díaz, A.B., Bolívar, J., de Ory, I., Caro, I., Blandino, A.: Applicability of enzymatic extracts obtained by solid state fermentation on grape pomace and orange peels mixtures in must clarification. Lwt-Food Sci. Technol. 44(4), 840–846 (2011)

    Article  Google Scholar 

  23. Miller, G.L.: Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31(3), 426–428 (1959)

    Article  Google Scholar 

  24. Ghose, T.: Measurement of cellulase activities. Pure Appl. Chem. 59(2), 257–268 (1987)

    Article  Google Scholar 

  25. Bailey, M.J., Biely, P., Poutanen, K.: Interlaboratory testing of methods for assay of xylanase activity. J. Biotechnol. 23(3), 257–270 (1992)

    Article  Google Scholar 

  26. Patil, S.R., Dayanand, A.: Optimization of process for the production of fungal pectinases from deseeded sunflower head in submerged and solid-state conditions. Bioresour. Technol. 97(18), 2340–2344 (2006)

    Article  Google Scholar 

  27. Gao, H., Liu, M., Liu, J., Dai, H., Zhou, X., Liu, X., Zhuo, Y., Zhang, W., Zhang, L.: Medium optimization for the production of avermectin B1a by Streptomyces avermitilis 14-12A using response surface methodology. Bioresour. Technol. 100(17), 4012–4016 (2009)

    Article  Google Scholar 

  28. Rezazadeh Bari, M., Alizadeh, M., Farbeh, F.: Optimizing endopectinase production from date pomace by Aspergillus niger PC5 using response surface methodology. Food Bioprod. Process. 88(1), 67–72 (2010)

    Article  Google Scholar 

  29. Hadj-Taieb, N., Ayadi, M., Khlif, M., Mrad, K., Hassairi, I., Gargouri, A.: Fermentor production of pectinases on gruel, a local by-product and their use in olive oil extraction. Enzyme Microb. Technol. 39(5), 1072–1076 (2006). doi:10.1016/j.enzmictec.2006.02.016

    Article  Google Scholar 

  30. Silva, D., Tokuioshi, K., da Silva Martins, E., Da Silva, R., Gomes, E.: Production of pectinase by solid-state fermentation with Penicillium viridicatum RFC3. Process Biochem. 40(8), 2885–2889 (2005)

    Article  Google Scholar 

  31. Heerd, D., Yegin, S., Tari, C., Fernandez-Lahore, M.: Pectinase enzyme-complex production by Aspergillus spp. in solid-state fermentation: a comparative study. Food Bioprod. Process. 90(2), 102–110 (2012)

    Article  Google Scholar 

  32. Gottschalk, L.M.F., Oliveira, R.A., Bon, E.P.S.: Cellulases, xylanases, β-glucosidase and ferulic acid esterase produced by Trichoderma and Aspergillus act synergistically in the hydrolysis of sugarcane bagasse. Biochem. Eng. J. 51(1–2), 72–78 (2010). doi:10.1016/j.bej.2010.05.003

    Article  Google Scholar 

  33. Oberoi, H.S., Chavan, Y., Bansal, S., Dhillon, G.S.: Production of cellulases through solid state fermentation using kinnow pulp as a major substrate. Food Bioprod. Process. 3(4), 528–536 (2010)

    Google Scholar 

  34. dos Santos, T.C., Gomes, D.P.P., Bonomo, R.C.F., Franco, M.: Optimisation of solid state fermentation of potato peel for the production of cellulolytic enzymes. Food Chem. 133(4), 1299–1304 (2012)

    Article  Google Scholar 

  35. Mamma, D., Kourtoglou, E., Christakopoulos, P.: Fungal multienzyme production on industrial by-products of the citrus-processing industry. Bioresour. Technol. 99(7), 2373–2383 (2008)

    Article  Google Scholar 

  36. Moyo, S., Gashe, B., Collison, E., Mpuchane, S.: Optimising growth conditions for the pectinolytic activity of Kluyveromyces wickerhamii by using response surface methodology. Int. J. Food Microbiol. 85(1), 87–100 (2003)

    Article  Google Scholar 

  37. Kumar, S., Sharma, H., Sarkar, B.: Effect of substrate and fermentation conditions on pectinase and cellulase production by Aspergillus niger NCIM 548 in submerged (SmF) and solid state fermentation (SSF). Food. Sci. Biotechnol. 20(5), 1289–1298 (2011)

    Article  Google Scholar 

  38. Rehman, H.U., Qader, S.A.U., Aman, A.: Polygalacturonase: production of pectin depolymerising enzyme from Bacillus licheniformis KIBGE IB-21. Carbohydr. Polym. 90(1), 387–391 (2012). doi:10.1016/j.carbpol.2012.05.055

    Article  Google Scholar 

  39. Nair, S., Panda, T.: Statistical optimization of medium components for improved synthesis of pectinase by Aspergillus niger. Bioprocess. Eng. 16(3), 169–173 (1997)

    Article  Google Scholar 

  40. Jayani, R.S., Saxena, S., Gupta, R.: Microbial pectinolytic enzymes: a review. Process Biochem. 40(9), 2931–2944 (2005)

    Article  Google Scholar 

  41. Jatinder, K., Chadha, B., Saini, H.: Optimization of culture conditions for production of cellulases and xylanases by Scytalidium thermophilum using response surface methodology. World J. Microbiol. Biotechnol. 22(2), 169–176 (2006)

    Article  Google Scholar 

  42. Li, Y., Liu, Z., Zhao, H., Xu, Y., Cui, F.: Statistical optimization of xylanase production from new isolated Penicillium oxalicum ZH-30 in submerged fermentation. Biochem. Eng. J. 34(1), 82–86 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the National High Technology Research and Development Program of China (863 Program) (No. 2011AA100804) and Hunan Provincial Innovation Foundation for Postgraduate (CX2013B084).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Lan Xia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, PJ., Xia, JL., Shan, Y. et al. Optimizing Production of Pectinase from Orange Peel by Penicillium oxalicum PJ02 Using Response Surface Methodology. Waste Biomass Valor 6, 13–22 (2015). https://doi.org/10.1007/s12649-014-9317-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-014-9317-4

Keywords

Navigation