Skip to main content
Log in

Enhanced light absorption of ultrathin crystalline silicon solar cells via the design of front nanostructured silicon nitride

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In contrast to traditional approach using Si nanotexture, we propose and investigate the light-trapping enhancement of ultrathin c-Si cells via the design of front nanostructured antireflective layer by using the finite-difference time-domain method, where four nanostructures of nanorod hole (NRH) arrays, nanosquare hole (NSH) arrays, inverted nanocone hole (INCH) arrays, and inverted nanopyramid hole (INPH) arrays are applied to silicon nitride for comparison. Via the simulations and optimizations, it is found that the solar cells with design of inverted nanocone hole arrays can produce the highest short-circuit photocurrent density of 29.46 mA/cm2 resulting in an enhancement of 29.32% compared with the control group (with 67 nm Si3N4). Furthermore, when the optimal cells are integrated with back silver, a photocurrent density of 32.20 mA/cm2 can be achieved, offering an additional benefit of 2.08 mA/cm2 compared with 30.12 mA/cm2 using back aluminum.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. A. Ali, S.L. Cheow, A.W. Azhari, K. Sopian, S.H. Zaidi, Enhancing crystalline silicon solar cell efficiency with Six-Ge1-x layers. Results Phys. 7, 225–232 (2016)

    Article  Google Scholar 

  2. S. P. Europe, Global market outlook for solar power 2016-2020. Sol. Power Eur.: Bruxelles, Belgium 32 (2016)

  3. ITRPV, International Technology Roadmap for Photovoltaic Tenth Edition, March 2019, in: PV Celltech Conference March 2019. Penang (2019)

  4. X. Tan, W. Yan, Y. Tu, C. Deng, Small pyramidal textured ultrathin crystalline silicon solar cells with double-layer passivation. Opt. Express 25, 14725 (2017)

    Article  CAS  Google Scholar 

  5. M.A. Green, K. Emery, D.L. King, S. Igari, W. Warta, Solar cell efficiency tables (Version 45). Progress Photovoltaics Res. Appl. 22, 1–9 (2013)

    Article  Google Scholar 

  6. S. Jeong, M. D. Mcgehee, Y. Cui, All-back-contact ultra-thin silicon nanocone solar cells with 13.7% power conversion efficiency. Nat. Commun. 4, (7 pp.)–2950 (7 pp.) (2013)

  7. C. Lin, M.L. Povinelli, Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications. Opt. Express 17, 9371–19381 (2009)

    Google Scholar 

  8. G. Yue, B. Yan, G. Ganguly, J. Yang, S. Guha, Metastability in hydrogenated nanocrystalline silicon solar cells. J. Mater. Res. 22, 1128–1137 (2007)

    Article  CAS  Google Scholar 

  9. P. Prathap, P. Akshit, B. Rana, Nano-photonic structures for light trapping in ultra-thin crystalline silicon solar cells. Nanomaterials 7, 17 (2017)

    Article  Google Scholar 

  10. S.K. Ram, D. Desta, R. Rizzoli, B.P. Falcão, E.H. Eriksen, M. Bellettato, B.R. Jeppesen, P.B. Jensen, C. Summonte, R.N. Pereira, A.N. Larsen, P. Balling, Efficient light-trapping with quasi-periodic uniaxial nanowrinkles for thin-film silicon solar cells. Nano Energy 35, 341–349 (2017)

    Article  CAS  Google Scholar 

  11. A. Rohatgi, E.R. Weber, L.C. Kimerling, Opportunities in silicon photovoltaics and defect control in photovoltaic materials. Electron. Mater. 22, 65–72 (1993)

    Article  CAS  Google Scholar 

  12. K.X. Wang, Z. Yu, V. Liu, Y. Cui, S. Fan, Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings. Nano Lett. 12, 1616–1619 (2012)

    Article  CAS  Google Scholar 

  13. V.E. Ferry, M.A. Verschuuren, M.C. van Lare, R.E.I. Schropp, H.A. Atwater, A. Polman, Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si: H solar cells. Nano Lett. 11, 4239–4245 (2011)

    Article  CAS  Google Scholar 

  14. M. Yamaguchi, K.H. Lee, K. Araki, N. Kojima, Y. Ohshita, Analysis for efficiency potential of crystalline Si solar cells. J. Mater. Res. 33, 2621–2626 (2018)

    Article  CAS  Google Scholar 

  15. X. Tan, Y. Tu, C. Deng, A. Czarnowski, W. Yan, Y. Mao, Enhancement of light trapping for ultrathin crystalline silicon solar cells. Opt. Commun. 426, 584–588 (2018)

    Article  CAS  Google Scholar 

  16. A. Deng, X. Tan, L. Jiang, Y. Tu, M. Ye, Y. Yi, Efficient light trapping in silicon inclined nanohole arrays for photovoltaic applications. Opt. Commun. 407, 199–203 (2018)

    Article  CAS  Google Scholar 

  17. M. Zeman, J. Krc, Optical and electrical modeling of thin-film silicon solar cells. J. Mater. Res. 23, 889–898 (2008)

    Article  CAS  Google Scholar 

  18. B. Wang, T. Gao, and P. W. Leu: Broadband light absorption enhancement in ultrathin film crystalline silicon solar cells with high index of refraction nanosphere arrays. Nano Energy (2016).

  19. R. Biswas, S. Pattnaik, C. Xu, J. Bhattachary, N. Chakravarty, V. Dalai, Enhancement of solar cells with photonic and plasmonic crystals-overcoming the Lambertian limit. J. Mater. Res. 28, 1021–1030 (2013)

    Article  CAS  Google Scholar 

  20. Y. Huang, W. Wang, W. Pan, W. Chen, Z. Wang, X. Tan, W. Yan, Comparative investigation on designs of light absorption enhancement of ultrathin crystalline silicon for photovoltaic applications. J. Photonics Energy 6, 047001 (2016)

    Article  Google Scholar 

  21. H. Li, Q. Wang, J. Chen, J. Krc, W.J. Soppe, Light trapping in amorphous silicon solar cells with periodic grating structures. Opt. Commun. 285, 808–815 (2012)

    Article  CAS  Google Scholar 

  22. T.H. Anderson, B.J. Civiletti, P. Monk, A. Lakhtakia, Coupled optoelectronic simulation and optimization of thin-film photovoltaic solar cells. J. Comput. Phys. (2019). https://doi.org/10.1016/j.jcp.2020.109242

    Article  Google Scholar 

  23. M.H. Muhammad, K.R. Mahmoud, M.F.O. Hameed, S.S.A. Obayya, Optimization of highly efficient random grating thin-film solar cell using modified gravitational search algorithm and particle swarm optimization algorithm. J. Nanophoton. (2018). https://doi.org/10.1117/1.JNP.12.016016

    Article  Google Scholar 

  24. H. Heidarzadeh, Incident light management in a thin silicon solar cell using a two-dimensional grating according a Gaussian distribution. Sol. Energy 189, 457–463 (2019)

    Article  CAS  Google Scholar 

  25. Z. Liu, L. Wu, X. Wang, Q. Xu, Y. Hu, K. Meng, G. Chen, Improving efficiency and stability of colorful perovskite solar cells with two-dimensional photonic crystals. Nanoscale 12, 8425–8431 (2020)

    Article  CAS  Google Scholar 

  26. A. Abbasiyan, M. Noori, H. Baghban, Investigation of quasi-periodic structures to increase the efficiency of thin-film silicon solar cells: a comparative study. Sol. Energy Mater. Sol. Cells 202, 110–129 (2019)

    Article  Google Scholar 

  27. A.H. Aly, H. Sayed, Enhancement of the solar cell based on nanophotonic crystals. J. Nanophoton. (2017). https://doi.org/10.1117/1.JNP.11.046020

    Article  Google Scholar 

  28. X. Ma, B. Ma, T. Yu, X. Xu, L. Zhang, W. Wang, K. Gao, L. Deng, S. Chen, W. Huang, Indepth studies on working mechanism of plasmon-enhanced inverted perovskite solar cells incorporated with Ag@SiO2 core-shell nanocubes. ACS Appl. Energy Mater. 2, 3605–3613 (2019)

    Article  CAS  Google Scholar 

  29. A. Bayles, S. Carretero-Palacios, L. Calió, G. Lozano, M.E. Calvo, H. Míguez, Localized surface plasmon effects on the photophysics of perovskite thin films embedding metal nanoparticles. J. Mater. Chem. C. 8, 916–921 (2020)

    Article  CAS  Google Scholar 

  30. Li Y , B. P. Zhang, C. H. Zhao , Z. Liang, and J. X. Zhao: Synthesis and optical absorption properties of Au–Ag nanoparticle bimetal dispersed SiO2 composite films. J. Mater. Res. 29, 221-229 (2014).

  31. J. Chantana, Y. Yang, Y. Sobajima, C. Sada, A. Matsuda, H. Okamoto, Localized surface plasmon enhanced microcrystalline–silicon solar cells. J. Non-Cryst. Solids 358, 2319–2323 (2012)

    Article  CAS  Google Scholar 

  32. X. Lu, Y. Li, S. Lun, X. Wang, J. Gao, Y. Wang, Y. Zhang, High efficiency light trapping scheme used for ultrathin c-Si solar cells. Sol. Energy Mater. Sol. Cells. 196, 57–64 (2019)

    Article  CAS  Google Scholar 

  33. Y. Chen, Y. Kang, J. Jia, Y. Huo, M. Xue, Z. Lyu, D. Liang, L. Zhao, J.S. Harris, Nanostructured dielectric layer for ultrathin crystalline silicon solar cells. Int. J. Photoenergy. (2017). https://doi.org/10.1155/2017/7153640

    Article  Google Scholar 

  34. K.P. Lim, D.K.T. Ng, Q. Wang, Broadband antireflection for a high-index substrate using SiNx /SiO2 by inductively coupled plasma chemical vapour deposition. J. Phys. D: Appl. Phys. 49, 085302 (2016)

    Article  Google Scholar 

  35. P. Spinelli, M. Hebbink, R. de Waele, L. Black, F. Lenzmann, A. Polman, Optical impedance matching using coupled plasmonic nanoparticle arrays. J. Nano Lett. 11, 1760–1765 (2011)

    Article  CAS  Google Scholar 

  36. A.M. Hsu, S.T. Connor, M.X. Tang, Y. Cui, Wafer-scale silicon nanopillars and nanocones by Langmuir-Blodgett assembly and etching. Appl. Phys. Lett. 93, 133109 (2008)

    Article  Google Scholar 

  37. A.D. Palik, Handbook of Optical Constant of Solids (Elsevier, New York, 1998).

    Google Scholar 

  38. H.R. Philipp, Optical Properties of Silicon Nitride (J. Electrochem, Soc, 1973).

    Book  Google Scholar 

  39. T. Tiedje, E. Yablonovitch, G.D. Cody, B.G. Brooks, Limiting efficiency of silicon solar cells. IEEE Trans. Electron Device 31, 711–716 (1984)

    Article  Google Scholar 

  40. ASTM [http://rredc.nrel.gov/solar/spectra/am1.5/]

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (Grant No. U1765105) and 111 Project (D20015) of China. The present work was also partly supported by the Fundamental Research & Edge-cutting Discovery Project of Chongqing City, China (cstc2018 jcyjAX0209).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to X. Y. Tan or W. S. Yan.

Supplementary information

Below is the link to the electronic supplementary material.

43578_2020_95_MOESM1_ESM.tif

Electronic supplementary material 1 Figure. S1: The wavelength dependent refractive index (left) and the extinction coefficient (right) of the Si3N4 in the wavelength of 300-1100 nm. (TIF 3410 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, D., Tan, X.Y., Sun, L. et al. Enhanced light absorption of ultrathin crystalline silicon solar cells via the design of front nanostructured silicon nitride. Journal of Materials Research 36, 668–676 (2021). https://doi.org/10.1557/s43578-020-00095-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-020-00095-0

Keywords

Navigation