Skip to main content
Log in

A Surface Design for Enhancement of Light Trapping Efficiencies in Thin Film Silicon Solar Cells

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We report on a surface design of thin film silicon solar cells based on silver nanoparticle arrays and blazed grating arrays. The light transmittance is increased at the front surface of the cells, utilizing the surface plasmon resonance effect induced by silver nanoparticle arrays. As a reflection layer structure, blazed gratings are placed at the rear surface to increase the light reflectance at bottom of the thin film cells. With the combination of the silver nanoparticle arrays and the blazed gratings, the light trapping efficiency of the thin film solar cell is characterized by its light absorptance, which is determined from the transmittance at front surface and the reflectance at bottom, via the finite-difference time-domain (FDTD) numerical simulation method. The results reveal that the light trapping efficiency is enhanced as the structural parameters are optimized. This work also shows that the surface plasmon resonance effect induced by the silver nanoparticles and the grating characteristics of the blazed gratings play crucial roles in the design of the thin film silicon solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Macdonald D, Cuevas A, Kerr MJ, Samundsett C, Ruby D, Winderbaum S, Leo A (2004) Texturing industrial multicrystalline silicon solar cells. Sol Energy 76(1):277–283

    Article  CAS  Google Scholar 

  2. Boltasseva A, Atwater HA (2011) Low-loss plasmonic metamaterials. Science 331:290–291

    Article  CAS  Google Scholar 

  3. Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9(3):205–213

    Article  CAS  Google Scholar 

  4. Qiu Y, Wang L, Hao H, Shi W, Lu M (2015) A synergetic effect of surface texture and field-effect passivations on improving si solar cell performance. Physica E: Low-dimensional Systems and Nanostructures 71:96–100

    Article  CAS  Google Scholar 

  5. Lanz T, Lapagna K, Altazin S, Boccard M, Haug F-J, Ballif C, Ruhstaller B (2015) Light trapping in solar cells: numerical modeling with measured surface textures. Opt Eng 23(11):A539–A546

    Google Scholar 

  6. Li D, Kunz T, Wolf N, Liebig JP, Wittmann S, Ahmad T, Hessmann MT, Auer R, Göken M, Brabec CJ (2015) Silicon nitride and intrinsic amorphous silicon double antireflection coatings for thin-film solar cells on foreign substrates. Thin Solid Films 583:25–33

    Article  CAS  Google Scholar 

  7. Rajbhandari PP, Emrani A, Dhakal TP, Westgate CR, Klotzkin D (2014) Antireflection coatings designed by the average uniform algorithm for thin film solar cells. Appl Opt 53(34):8006–8011

    Article  Google Scholar 

  8. Dubey R, Saravanan S, Kalainathan S (2014) Performance enhancement of thin film silicon solar cells based on distributed bragg reflector & diffraction grating. AIP Adv 4(12):127121

    Article  Google Scholar 

  9. Sidharthan R, Murukeshan V (2013) Improved light absorption in thin film solar cell using combination of gap modes and grating back reflector. Thin Solid Films 548:581–584

    Article  CAS  Google Scholar 

  10. Mutitu JG, Shi S, Chen C, Creazzo T, Barnett A, Honsberg C, Prather DW (2008) Thin film solar cell design based on photonic crystal and diffractive grating structures. Opt Express 16(19):15238–15248

    Article  Google Scholar 

  11. Zhang A, Guo Z, Tao Y, Wang W, Mao X, Fan G, Zhou K, Qu S (2015) Advanced light-trapping effect of thin-film solar cell with dual photonic crystals. Nanoscale Res Lett 10(1):1–10

    Article  Google Scholar 

  12. Diukman I, Orenstein M (2011) How front side plasmonic nanostructures enhance solar cell efficiency. Sol Energy Mater Sol Cells 95(9):2628–2631

    Article  CAS  Google Scholar 

  13. Winans JD, Hungerford C, Shome K, Rothberg LJ, Fauchet PM (2015) Plasmonic effects in ultrathin amorphous silicon solar cells: performance improvements with ag nanoparticles on the front, the back, and both. Opt Express 23(3):A92–A105

    Article  Google Scholar 

  14. Moulin E, Sukmanowski J, Schulte M, Gordijn A, Royer F, Stiebig H (2008) Thin-film silicon solar cells with integrated silver nanoparticles. Thin Solid Films 516(20):6813–6817

    Article  CAS  Google Scholar 

  15. Rockstuhl C, Lederer F (2009) Photon management by metallic nanodiscs in thin film solar cells. Appl Phys Lett 94 (21):213102

    Article  Google Scholar 

  16. Akimov YA, Ostrikov K, Li E (2009) Surface plasmon enhancement of optical absorption in thin-film silicon solar cells. Plasmonics 4(2):107–113

    Article  CAS  Google Scholar 

  17. Mokkapati S, Beck F, Polman A, Catchpole K (2009) Designing periodic arrays of metal nanoparticles for light-trapping applications in solar cells. Appl Phys Lett 95 (5):053115

    Article  Google Scholar 

  18. Islam K, Alnuaimi A, Battal E, Okyay AK, Nayfeh A (2014) Effect of gold nanoparticles size on light scattering for thin film amorphous-silicon solar cells. Sol Energy 103:263–268

    Article  CAS  Google Scholar 

  19. Lee Y-Y, Ho W-J, Chen Y-T (2014) Performance of plasmonic silicon solar cells using indium nanoparticles deposited on a patterned tio 2 matrix. Thin Solid Films 570:194–199

    Article  CAS  Google Scholar 

  20. Sun C, Su J, Wang X (2015) A design of thin film silicon solar cells based on silver nanoparticle arrays. Plasmonics 10(3):633–641

    Article  CAS  Google Scholar 

  21. Sun C, Wang X (2015) Efficient light trapping structures of thin film silicon solar cells based on silver nanoparticle arrays. Plasmonics:1–8

  22. Kanamori Y, Sasaki M, Hane K (1999) Broadband antireflection gratings fabricated upon silicon substrates. Opt Lett 24(20):1422–1424

    Article  CAS  Google Scholar 

  23. Striemer C, Fauchet P (2002) Dynamic etching of silicon for broadband antireflection applications. Appl Phys Lett 81(16):2980–2982

    Article  CAS  Google Scholar 

  24. Song YM, Bae SY, Yu JS, Lee YT (2009) Closely packed and aspect-ratio-controlled antireflection subwavelength gratings on gas using a lenslike shape transfer. Opt Lett 34(11):1702–1704

    Article  CAS  Google Scholar 

  25. Song YM, Yu JS, Lee YT (2010) Antireflective submicrometer gratings on thin-film silicon solar cells for light-absorption enhancement. Opt lett 35(3):276–278

    Article  CAS  Google Scholar 

  26. Bai W, Gan Q, Bartoli F, Zhang J, Cai L, Huang Y, Song G (2009) Design of plasmonic back structures for efficiency enhancement of thin-film amorphous Si solar cells. Opt lett 34(23):3725–3727

    Article  CAS  Google Scholar 

  27. Escoubas L, Simon J-J, Torchio P, Duché D, Vedraine S, Vervisch W, Le Rouzo J, Flory F, Rivière G, Yeabiyo G et al (2011) Bringing some photonic structures for solar cells to the fore. Appl Opt 50(9):C329–C339

    Article  CAS  Google Scholar 

  28. Zheng G, Zhang W, Xu L, Chen Y, Liu Y (2014) Absorbance enhancement of thin film solar cells with front double dielectric and back metallic grating. Infrared Phys Technol 67:52–57

    Article  CAS  Google Scholar 

  29. Zhang W, Zheng G, Jiang L, Li X (2013) Combined front diffraction and back blazed gratings to enhance broad band light harvesting in thin film solar cells. Opt Commun 298:250–253

    Article  Google Scholar 

  30. Lin LJ, Chiou Y-P (2012) Improving thin-film crystalline silicon solar cell efficiency with back surface field layer and blaze diffractive grating. Solar Energy 86(5):1485–1490

    Article  CAS  Google Scholar 

  31. Ji L, Varadan V (2012) A blazed grating for light trapping in a-si thin-film solar cells. J Opt 14(9):095001

    Article  Google Scholar 

  32. Lumerical Solutions, Inc., http://www.lumerical.com/tcad-products/fdtd/

  33. Palik ED (1998) Handbook of optical constants of solids, Vol 3. Academic press

Download references

Acknowledgments

C. Sun acknowledges support by Grant Number 31400718 from the National Natural Science Foundation of China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoqiu Wang or Jie Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, C., Wang, Z., Wang, X. et al. A Surface Design for Enhancement of Light Trapping Efficiencies in Thin Film Silicon Solar Cells. Plasmonics 11, 1003–1010 (2016). https://doi.org/10.1007/s11468-015-0135-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-015-0135-8

Keywords

Navigation