Skip to main content
Log in

Next generation tissue engineering of orthopedic soft tissue-to-bone interfaces

  • Biomaterials for 3D Cell Biology Prospective Article
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Soft tissue-to-bone interfaces are complex structures that consist of gradients of extracellular matrix materials, cell phenotypes, and biochemical signals. These interfaces, called entheses for ligaments, tendons, and the meniscus, are crucial to joint function, transferring mechanical loads and stabilizing orthopedic joints. When injuries occur to connected soft tissue, the enthesis must be re-established to restore function, but due to structural complexity, repair has proven challenging. Tissue engineering offers a promising solution for regenerating these tissues. This prospective review discusses methodologies for tissue engineering the enthesis, outlined in three key design inputs: materials processing methods, cellular contributions, and biochemical factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Table I
Figure 7

Similar content being viewed by others

References

  1. A.C. Abraham and T.L. Haut Donahue: From meniscus to bone: a quantitative evaluation of structure and function of the human meniscal attachments. Acta Biomater. 9, 6322–6329 (2013).

    Article  Google Scholar 

  2. L. Mente and J.L. Lewis: Elastic modulus of calcified cartilage is an order of magnitude less than that of subchondral bone. J. Orthop. Res. 12, 637–647 (1994).

    Article  CAS  Google Scholar 

  3. R.M. Schinagl, D. Gurskis, A.C. Chen, and R.L. Sah: Depth-dependent confined compression modulus of full-thickness bovine articular cartilage. J. Orthop. Res. 15, 499–506 (1997).

    Article  CAS  Google Scholar 

  4. P. Brooks: Inflammation as an important feature of osteoarthritis. Bull. World Health Organ. 81, 689–690 (2003).

    Google Scholar 

  5. W.R. Shelton and A.D. Dukes: Meniscus replacement with bone anchors: a surgical technique. Arthrosc. J. Arthrosc. Relat. Surg. 10, 324–327 (1994).

    Article  CAS  Google Scholar 

  6. E.A. Khetia and B.P. McKeon: Meniscal allografts: biomechanics and techniques. Sports Med. Arthrosc. 15, 114–120 (2007).

    Article  Google Scholar 

  7. P.J. Yang and J.S. Temenoff: Engineering orthopedic tissue interfaces. Tissue Eng. B., Rev. 15, 127–141 (2009).

    Article  CAS  Google Scholar 

  8. H.H. Lu and S. Thomopoulos: Functional attachment of soft tissues to bone: development, healing, and tissue engineering. Annu. Rev. Biomed. Eng. 15, 201–226 (2013).

    Article  CAS  Google Scholar 

  9. S. Font Tellado, E. Rosado Balmayor, and M. Van Griensven: Strategies to engineer tendon/ligament-to-bone interface: biomaterials, cells and growth factors. Adv. Drug Deliv. Rev. 94, 126–140 (2015).

    Article  CAS  Google Scholar 

  10. T.M. Hammoudi and J.S. Temenoff: Biomaterials for regeneration of tendons and ligaments. Biomater. Tissue Eng. Appl. 11, 307–341 (2011).

    Google Scholar 

  11. J. Gao, K. Messner, J. Ralphs, and M. Benjamin: An immunohistochemical study of enthesis development in the medial collateral ligament of the rat knee joint. Anat. Embryol. (Berlt). 19, 399–406 (1996).

    Google Scholar 

  12. J.P. Spalazzi, A.L. Boskey, N. Pleshko, and H.H. Lu: Quantitative mapping of matrix content and distribution across the ligament-to-bone insertion. PLoS ONE. 8, e74349 (2013).

    Article  CAS  Google Scholar 

  13. S. Thomopoulos, G.M. Genin, and L.M. Galatz: The development and morphogenesis of the tendon-to-bone insertion. What development can teach us about healing. J. Musculoskelet. Neuronal Interact. 10, 35–45 (2010).

    CAS  Google Scholar 

  14. K. Messner and J. Gao: The menisci of the knee joint. Anatomical and functional characteristics, and a rationale for clinical treatment. J. Anat. 193, 161–178 (1998).

    Article  CAS  Google Scholar 

  15. J. Gao: Immunolocalization of types I, II, and X collagen in the tibial insertion sites of the medial meniscus. Knee Surg. Sports Traumatol. Arthrosc. 8, 61–65 (2000).

    Article  CAS  Google Scholar 

  16. W. Petersen and B. Tillmann: Structure and vascularization of the cruciate ligaments of the human knee joint. Anat. Embryol. (Berl). 200, 325–334 (1999).

    Article  CAS  Google Scholar 

  17. I-N.E. Wang, S. Mitroo, F.H. Chen, H.H. Lu, and S.B. Doty: Age-dependent changes in matrix composition and organization at the ligament-to-bone insertion. J. Orthop. Res. 24, 1745–1755 (2006).

    Article  CAS  Google Scholar 

  18. M. Benjamin and J.R. Ralphs: The cell and developmental biology of tendons and ligaments. Int. Rev. Cytol. 196, 85–130 (2000).

    Article  CAS  Google Scholar 

  19. G.M. Genin, A. Kent, V. Birman, B. Wopenka, J.D. Pasteris, P.J. Marquez, and S. Thomopoulos: Functional grading of mineral and collagen in the attachment of tendon to bone. Biophys. J. 97, 976–985 (2009).

    Article  CAS  Google Scholar 

  20. P. Buma, N.N. Ramrattan, T.G. van Tienen, and R.P. Veth: Tissue engineering of the meniscus. Biomaterials 25, 1523–1532 (2004).

    Article  CAS  Google Scholar 

  21. M.T. Rodrigues, R.L. Reis, and M.E. Gomes: Engineering tendon and ligament tissues: present developments towards successful clinical products. J. Tissue Eng. Regen. Med. 7, 673–686 (2013).

    Article  CAS  Google Scholar 

  22. A. Di Luca, C.A. Van Blitterswijk, and L. Moroni: The osteochondral interface as a gradient tissue: From development to the fabrication of gradient scaffolds for regenerative medicine. Birth Defects Res. C 105, 34–52 (2015).

    Article  Google Scholar 

  23. C. Vaquette, W. Fan, Y. Xiao, S. Hamlet, D.W. Hutmacher, and S. Ivanovski: A biphasic scaffold design combined with cell sheet technology for simultaneous regeneration of alveolar bone/periodontal ligament complex. Biomaterials 33, 5560–5573 (2012).

    Article  CAS  Google Scholar 

  24. A.D. Waggett, J.R. Ralphs, A.P.L. Kwan, D. Woodnutt, and M. Benjamin: Characterization of collagens and proteoglycans at the insertion of the human Achilles tendon. Matrix Biol. 16, 457–470 (1998).

    Article  CAS  Google Scholar 

  25. P. Fratzl and R. Weinkamer: Nature’s hierarchical materials. Prog. Mater. Sci. 52, 1263–1334 (2007).

    Article  CAS  Google Scholar 

  26. K.L. Moffat, W-H.S. Sun, P.E. Pena, N.O. Chahine, S.B. Doty, G.A. Ateshian, C.T. Hung, and H.H. Lu: Characterization of the structure-function relationship at the ligament-to-bone interface. Proc. Natl. Acad. Sci. U.S.A. 105, 7947–7952 (2008).

    Article  CAS  Google Scholar 

  27. Y.X. Liu, S. Thomopoulos, V. Birman, J.S. Li, and G.M. Genin: Bi-material attachment through a compliant interfacial system at the tendon-to-bone insertion site. Mech. Mater. 44, 83–92 (2012).

    Article  CAS  Google Scholar 

  28. G. Shen: The role of type X collagen in facilitating and regulating endochondral ossification of articular cartilage. Orthod. Craniofacial Res. 8, 11–17 (2005).

    Article  CAS  Google Scholar 

  29. T.E. Hardingham and A.J. Fosang: Proteoglycans: many forms and many function. FASEB J. 6, 861–870 (1992).

    Article  CAS  Google Scholar 

  30. M. Benjamin and J.R. Ralphs: Fibrocartilage in tendons and ligaments—an adaptation to compressive load. J. Anat. 193(Pt 4), 481–494 (1998).

    Article  Google Scholar 

  31. J. Melrose, S. Smith, M. Cake, R. Read, and J. Whitelock: Comparative spatial and temporal localisation of perlecan, aggrecan and type I, II and IV collagen in the ovine meniscus: An ageing study. Histochem. Cell Biol. 124, 225–235 (2005).

    Article  CAS  Google Scholar 

  32. L. Rossetti, L.A. Kuntz, E. Kunold, J. Schock, H. Grabmayr, S.A. Sieber, R. Burgkart, and A.R. Bausch: The microstructure and micromechanics of the tendon–bone insertion. Nat. Mater. 16, 664–670 (2017).

    Article  CAS  Google Scholar 

  33. H. Tavakoli Nia, L. Han, I. Soltani Bozchalooi, P. Roughley, K. Youcef-Toumi, A.J. Grodzinsky, and C. Ortiz: Aggrecan nanoscale solid-fluid interactions are a primary determinant of cartilage dynamic mechanical properties. ACS Nano. 9, 2614–2625 (2015).

    Article  CAS  Google Scholar 

  34. A.K. Garg, R.A. Berg, F.H. Silver, and H.G. Garg: Effect of proteoglycans on type I collagen fibre formation. Biomaterials 10, 413–419 (1989).

    Article  CAS  Google Scholar 

  35. K.G. Vogel and J.A. Trotter: The effect of proteoglycans on the morphology of collagen fibrils formed in vitro. Coll. Relat. Res. 7, 105–114 (1987).

    Article  CAS  Google Scholar 

  36. K.G. Vogel, M. Paulsson, and D. Heinegård: Specific inhibition of type I and type II collagen fibrillogenesis by the small proteoglycan of tendon. Biochem. J. 223, 587–597 (1984).

    Article  CAS  Google Scholar 

  37. E.J. Vanderploeg, C.G. Wilson, S.M. Imler, C.H.Y. Ling, and M.E. Levenston: Regional variations in the distribution and colocalization of extracellular matrix proteins in the juvenile bovine meniscus. J. Anat. 221, 174–186 (2012).

    Article  CAS  Google Scholar 

  38. B. Wopenka and J.D. Pasteris: A mineralogical perspective on the apatite in bone. Mater. Sci. Eng. C 25, 131–143 (2005).

    Article  Google Scholar 

  39. F. Nudelman, A.J. Lausch, N.A. Sommerdijk, and E.D. Sone: In vitro models of collagen biomineralization. J. Struct. Biol. 183, 258–269 (2013).

    Article  CAS  Google Scholar 

  40. S. Weiner and H.D. Wagner: THE MATERIAL BONE: structure-mechanical function relations. Annu. Rev. Mater. Sci. 28, 271–298 (1998).

    Article  CAS  Google Scholar 

  41. N. Reznikov, R. Shahar, and S. Weiner: Bone hierarchical structure in three dimensions. Acta Biomater. 10, 3815–3826 (2014).

    Article  Google Scholar 

  42. A.G. Schwartz, J.D. Pasteris, G.M. Genin, T.L. Daulton, and S. Thomopoulos: Mineral distributions at the developing tendon enthesis. PLoS ONE 7, 1–11 (2012).

    Article  Google Scholar 

  43. T.M. Keaveny, E.F. Morgan, G.L. Niebur, and O.C. Yeh: Biomechanics of trabecular bone. Annu. Rev. Biomed. Eng. 3, 307–333 (2001).

    Article  CAS  Google Scholar 

  44. A.C. Deymier-Black, J.D. Pasteris, G.M. Genin, and S. Thomopoulos: Allometry of the tendon enthesis: mechanisms of load transfer between tendon and bone. J. Biomech. Eng. 137, 111005 (2015).

    Article  Google Scholar 

  45. K.S. Allan, R.M. Pilliar, J. Wang, M.D. Grynpas, and R.A. Kandel: Formation of biphasic constructs containing cartilage with a calcified zone interface. Tissue Eng. 13, 167–177 (2007).

    Article  CAS  Google Scholar 

  46. X. Huang, D. Yang, W. Yan, Z. Shi, J. Feng, Y. Gao, W. Weng, and S. Yan: Osteochondral repair using the combination of fibroblast growth factor and amorphous calcium phosphate/poly(l-lactic acid) hybrid materials. Biomaterials 28, 3091–3100 (2007).

    Article  CAS  Google Scholar 

  47. W. Liu, J. Lipner, J. Xie, C.N. Manning, S. Thomopoulos, and Y. Xia: Nano fiber scaffolds with gradients in mineral content for spatial control of osteogenesis. ACS Appl. Mater. Interfaces 6, 2842–2849 (2014).

    Article  CAS  Google Scholar 

  48. B.S. Kim, E.J. Kim, J.S. Choi, J.H. Jeong, C.H. Jo, and Y.W. Cho: Human collagen-based multilayer scaffolds for tendon-to-bone interface tissue engineering. J. Biomed. Mater. Res. A 102, 4044–4054 (2014).

    Article  Google Scholar 

  49. E. Nyberg, A. Rindone, A. Dorafshar, and W.L. Grayson: Comparison of 3D-printed poly-ε-caprolactone scaffolds functionalized with tricalcium phosphate, hydroxyapatite, bio-oss, or decellularized bone matrix. Tissue Eng. A 23, 503–514 (2017).

    Article  CAS  Google Scholar 

  50. A. Tevlek, P. Hosseinian, C. Ogutcu, M. Turk, and H.M. Aydin: Bi-layered constructs of poly(glycerol-sebacate)-β-tricalcium phosphate for bone-soft tissue interface applications. Mater. Sci. Eng. C 72, 316–324 (2017).

    Article  CAS  Google Scholar 

  51. J.P. Spalazzi, S.B. Doty, K.L. Moffat, W.N. Levine, and H.H. Lu: Development of controlled matrix heterogeneity on a triphasic scaffold for orthopedic interface tissue engineering. Tissue Eng. 12, 3497–3508 (2006).

    Article  CAS  Google Scholar 

  52. G. Criscenti, A. Longoni, A. Di Luca, C. De Maria, C.A. Van Blitterswijk, G. Vozzi, and L. Moroni: Triphasic scaffolds for the regeneration of the bone–ligament interface. Biofabrication 8, 15009 (2016).

    Article  CAS  Google Scholar 

  53. J.A. Cooper, H.H. Lu, F.K. Ko, J.W. Freeman, and C.T. Laurencin: Fiber-based tissue-engineered scaffold for ligament replacement: design considerations and in vitro evaluation. Biomaterials 26, 1523–1532 (2005).

    Article  CAS  Google Scholar 

  54. N.H. Dormer, M. Singh, L. Zhao, N. Mohan, C.J. Berkland, and M.S. Detamore: Osteochondral interface regeneration of the rabbit knee with macroscopic gradients of bioactive signals. J. Biomed. Mater. Res. 100, 162–170 (2012).

    Article  Google Scholar 

  55. Y. Liu, S. Thomopoulos, C. Chen, V. Birman, M.J. Buehler, and G.M. Genin: Modelling the mechanics of partially mineralized collagen fibrils, fibres and tissue. J. R. Soc. Interface 11, 20130835 (2014).

    Article  Google Scholar 

  56. J.Z. Paxton, K. Donnelly, R.P. Keatch, and K. Baar: Engineering the bone–ligament Interface using polyethylene glycol diacrylate incorporated with hydroxyapatite. Tissue Eng. A 15, 1201–1209 (2009).

    Article  CAS  Google Scholar 

  57. G.H. Altman, R.L. Horan, H.H. Lu, J. Moreau, I. Martin, J.C. Richmond, and D.L. Kaplan: Silk matrix for tissue engineered anterior cruciate ligaments. Biomaterials 23, 4131–4141 (2002).

    Article  CAS  Google Scholar 

  58. S. Font Tellado, W. Bonani, E. Rosado Balmayor, P. Föhr, A. Motta, C. Migliaresi, and M. van Griensven: Fabrication and characterization of biphasic silk fibroin scaffolds for tendon/ligament-to-bone tissue engineering. Tissue Eng. A 23, 859–872 (2017).

    Article  CAS  Google Scholar 

  59. Y-B. Park, C-W. Ha, C-H. Lee, and Y-G. Park: Restoration of a large osteochondral defect of the knee using a composite of umbilical cord blood-derived mesenchymal stem cells and hyaluronic acid hydrogel: a case report with a 5-year follow-up. BMC Musculoskelet. Disord. 18, 59 (2017).

    Article  Google Scholar 

  60. M.C. McCorry, M.M. Mansfield, X. Sha, D.J. Coppola, J.W. Lee, and L.J. Bonassar: A model system for developing a tissue engineered meniscal enthesis. Acta Biomater. 56, 110–117 (2016).

    Article  Google Scholar 

  61. C.H. Chang, F.H. Lin, C.C. Lin, C.H. Chou, and H.C. Liu: Cartilage tissue engineering on the surface of a novel gelatin-calcium- phosphate biphasic scaffold in a double-chamber bioreactor. J. Biomed. Mater. Res.B, Appl. Biomater. 71, 313–321 (2004).

    Article  Google Scholar 

  62. I-N.E. Wang, J. Shan, R. Choi, S. Oh, C.K. Kepler, F.H. Chen, and H.H. Lu: Role of osteoblast–fibroblast interactions in the formation of the ligament-to-bone interface. J. Orthop. Res. 25, 1609–1620 (2007).

    Article  CAS  Google Scholar 

  63. K. Xu, L.A. Kuntz, P. Foehr, K. Kuempel, A. Wagner, J. Tuebel, C.V. Deimling, and R.H. Burgkart: Efficient decellularization for tissue engineering of the tendon-bone interface with preservation of biomechanics. PLoS ONE. 12, e0171577 (2017).

    Article  Google Scholar 

  64. S. Sundar, C.J. Pendegrass, and G.W. Blunn: Tendon bone healing can be enhanced by demineralized bone matrix: a functional and histological study. J. Biomed. Mater. Res. B, Appl. Biomater. 88, 115–122 (2009).

    Article  Google Scholar 

  65. J. Lipner, H. Shen, L. Cavinatto, W. Liu, N. Havlioglu, Y. Xia, L.M. Galatz, and S. Thomopoulos: In vivo evaluation of adipose-derived stromal cells delivered with a nanofiber scaffold for tendon-to-bone repair. Tissue Eng. A 21, 2766–2774 (2015).

    Article  CAS  Google Scholar 

  66. U.G. Wegst, H. Bai, E. Saiz, A.P. Tomsia, and R.O. Ritchie: Bioinspired structural materials. Nat. Mater. 14, 23–36 (2014).

    Article  Google Scholar 

  67. X. Ding, M. Zhu, B. Xu, J. Zhang, Y. Zhao, S. Ji, L. Wang, L. Wang, X. Li, D. Kong, X. Ma, and Q. Yang: Integrated trilayered silk fibroin scaffold for osteochondral differentiation of adipose-derived stem cells. ACS Appl. Mater. Interfaces 6, 16696–16705 (2014).

    Article  CAS  Google Scholar 

  68. J. Ma, M.J. Smietana, T.Y. Kostrominova, E.M. Wojtys, L.M. Larkin, and E.M. Arruda: Three-dimensional engineered bone–ligament–bone constructs for anterior cruciate ligament replacement. Tissue Eng. A 18, 103–116 (2012).

    Article  CAS  Google Scholar 

  69. H.K. Min, S.H. Oh, J.M. Lee, G.I. Im, and J.H. Lee: Porous membrane with reverse gradients of PDGF-BB and BMP-2 for tendon-to-bone repair: In vitro evaluation on adipose-derived stem cell differentiation. Acta Biomater. 10, 1272–1279 (2014).

    Article  CAS  Google Scholar 

  70. B.M. Baker and R.L. Mauck: The effect of nanofiber alignment on the maturation of engineered meniscus constructs. Biomaterials 28, 1967–1977 (2007).

    Article  CAS  Google Scholar 

  71. J.S. Park, H.J. Yang, D.G. Woo, H.N. Yang, K. Na, and K.H. Park: Chondrogenic differentiation of mesenchymal stem cells embedded in a scaffold by long-term release of TGF-B3 complexed with chondroitin sulfate. J. Biomed. Mater. Res. A 92, 806–816 (2010).

    Google Scholar 

  72. W.M. Han, S-J. Heo, T.P. Driscoll, J.F. Delucca, C.M. McLeod, L.J. Smith, R.L. Duncan, R.L. Mauck, and D.M. Elliott: Microstructural heterogeneity directs micromechanics and mechanobiology in native and engineered fibrocartilage. Nat. Mater. 15, 477–484 (2016).

    Article  CAS  Google Scholar 

  73. J.P. Spalazzi, E. Dagher, S.B. Doty, X.E. Guo, S.A. Rodeo, and H.H. Lu: In vivo evaluation of a multiphased scaffold designed for orthopaedic interface tissue engineering and soft tissue-to-bone integration. J. Biomed. Mater. Res. A 86, 1–12 (2008).

    Article  Google Scholar 

  74. J.L. Puetzer, E. Koo, and L.J. Bonassar: Induction of fiber alignment and mechanical anisotropy in tissue engineered menisci with mechanical anchoring. J. Biomech. 48, 1436–1443 (2015).

    Article  Google Scholar 

  75. J.B. Lian and G.S. Stein: Concepts of osteoblast growth and differentiation: basis for modulation of bone cell development and tissue formation. Crit. Rev. Oral Biol. Med. 3, 269–305 (1992).

    Article  CAS  Google Scholar 

  76. E.J. Mackie, Y.A. Ahmed, L. Tatarczuch, K.S. Chen, and M. Mirams: Endochondral ossification: How cartilage is converted into bone in the developing skeleton. Int. J. Biochem. Cell Biol. 40, 46–62 (2008).

    Article  CAS  Google Scholar 

  77. L.J. Sandell and T. Aigner: Articular cartilage and changes in arthritis. An introduction: Cell biology of osteoarthritis. Arthritis Res. 3, 107–113 (2001).

    Article  CAS  Google Scholar 

  78. J. Sanchez-Adams and K.A. Athanasiou: The knee meniscus: a complex tissue of diverse cells. Cell. Mol. Bioeng. 2, 332–340 (2009).

    Article  Google Scholar 

  79. K. Spanoudes, D. Gaspar, A. Pandit, and D.I. Zeugolis: The biophysical, biochemical, and biological toolbox for tenogenic phenotype maintenance in vitro. Trends Biotechnol. 32, 474–482 (2014).

    Article  CAS  Google Scholar 

  80. A. Hasegawa, H. Nakahara, M. Kinoshita, H. Asahara, J. Koziol, and M.K. Lotz: Cellular and extracellular matrix changes in anterior cruciate ligaments during human knee aging and osteoarthritis. Arthritis Res. Ther. 15, R29 (2013).

    Article  CAS  Google Scholar 

  81. C.H. Lee, S.A. Rodeo, L.A. Fortier, C. Lu, C. Erisken, and J.J. Mao: Protein-releasing polymeric scaffolds induce fibrochondrocytic differentiation of endogenous cells for knee meniscus regeneration in sheep. Sci. Transl. Med. 6, 266ra171 (1–11) (2014).

  82. F.A. Monibi and J.L. Cook: Tissue-derived extracellular matrix bioscaffolds: emerging applications in cartilage and meniscus repair. Tissue Eng. B, Rev. 23, 386–398 (2017).

    Article  CAS  Google Scholar 

  83. E. Zelzer, E. Blitz, M.L. Killian, and S. Thomopoulos: Tendon-to-bone attachment: from development to maturity. Birth Defects Res. Part C. 102, 101–112 (2014).

    Article  CAS  Google Scholar 

  84. J. Jiang, S.B. Nicoll, and H.H. Lu: Co-culture of osteoblasts and chondrocytes modulates cellular differentiation in vitro. Biochem. Biophys. Res. Commun. 338, 762–770 (2005).

    Article  CAS  Google Scholar 

  85. M.C. McCorry, J.L. Puetzer, and L.J. Bonassar: Characterization of mesenchymal stem cells and fibrochondrocytes in three-dimensional co-culture: analysis of cell shape, matrix production, and mechanical performance. Stem Cell Res. Ther. 7, 39 (2016).

    Article  Google Scholar 

  86. M.C. McCorry and L.J. Bonassar: Fiber development and matrix production in tissue-engineered menisci using bovine mesenchymal stem cells and fibrochondrocytes. Connect. Tissue Res. 58, 329–341 (2017).

    Article  CAS  Google Scholar 

  87. G. Im: Coculture in musculoskeletal tissue regeneration. Tissue Eng. B, Rev. 20, 545–554 (2014).

    Article  Google Scholar 

  88. L. Bian, D.Y. Zhai, R.L. Mauck, and J.A. Burdick: Coculture of human mesenchymal stem cells and enhances functional properties of engineered cartilage reverse primer. Tissue Eng. A 17, 1137–1145 (2011).

    Article  CAS  Google Scholar 

  89. G.M. Hoben, V.P. Willard, and K.A. Athanasiou: Fibrochondrogenesis of hESCs: growth factor combinations and cocultures. Stem Cells Dev. 18, 283–292 (2009).

    Article  CAS  Google Scholar 

  90. E. Gardner and R. O’Rahilly: The early development of the knee joint in staged human embryos. J. Anat. 102, 289–299 (1968).

    CAS  Google Scholar 

  91. D.J. Gray and E. Gardner: Prenatal development of the human knee and superior tibiofibular joints. Am. J. Anat. 86, 235–287 (1950).

    Article  CAS  Google Scholar 

  92. J.A. Mérida-Velasco, I. Sánchez-Montesinos, J. Espín-Ferra, J.F. Rodríguez-Vázquez, J.R. Mérida-Velasco, and J. Jiménez-Collado: Development of the human knee joint. Anat. Rec. 248, 269–278 (1997).

    Article  Google Scholar 

  93. A.I. Caplan and J.E. Dennis: Mesenchymal stem cells as trophic mediators. J. Cell. Biochem. 98, 1076–1084 (2006).

    Article  CAS  Google Scholar 

  94. A.M. Mackay, S.C. Beck, J.M. Murphy, F.P. Barry, C.O. Chichester, and M.F. Pittenger: Chondrogenic differentiation of cultured human mesenchymal stem cells from marrow. Tissue Eng. 4, 415–428 (1998).

    Article  CAS  Google Scholar 

  95. G.I. Im, Y.W. Shin, and K.B. Lee: Do adipose tissue-derived mesenchymal stem cells have the same osteogenic and chondrogenic potential as bone marrow-derived cells? Osteoarthr. Cartil. 13, 845–853 (2005).

    Article  Google Scholar 

  96. J.P. Spalazzi and H.H. Lu: Osteoblast and chondrocyte interactions during coculture on scaffolds. IEEE Eng. Med. Biol. Mag. 22, 27–34 (2003).

    Article  Google Scholar 

  97. N.J. Gunja and K.A. Athanasiou: Passage and reversal effects on gene expression of bovine meniscal fibrochondrocytes. Arthritis Res. Ther. 9, 1–12 (2007).

    Article  Google Scholar 

  98. C. Zeltz and D. Gullberg: The integrin-collagen connection—a glue for tissue repair? J. Cell Sci. 129, 653–664 (2016).

    Article  CAS  Google Scholar 

  99. A.D. Augst, H.J. Kong, and D.J. Mooney: Alginate hydrogels as biomaterials. Macromol. Biosci. 6, 623–633 (2006).

    Article  CAS  Google Scholar 

  100. B.M. Baker, A.S. Nathan, A.O. Gee, R.L. Mauck: The influence of an aligned nanofibrous topography on human mesenchymal stem cell fibrochondrogenesis. Biomaterials 31, 6190–6200 (2010).

    Article  CAS  Google Scholar 

  101. J.R. Tse, and A.J. Engler: Stiffness gradients mimicking in vivo tissue variation regulate mesenchymal stem cell fate. PLoS ONE 6, e15978 (2011).

    Article  CAS  Google Scholar 

  102. A.J. Engler, S. Sen, H.L. Sweeney, and D.E. Discher: Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006).

    Article  CAS  Google Scholar 

  103. C.H. Lee, H.J. Shin, I.H. Cho, Y-M. Kang, I.A. Kim, K-D. Park, and J-W. Shin: Nanofiber alignment and direction of mechanical strain affect the ECM production of human ACL fibroblast. Biomaterials 26, 1261–1270 (2005).

    Article  CAS  Google Scholar 

  104. S.D. Subramony, B.R. Dargis, M. Castillo, E.U. Azeloglu, M.S. Tracey, A. Su, and H.H. Lu: The guidance of stem cell differentiation by substrate alignment and mechanical stimulation. Biomaterials 34, 1942–1953 (2013).

    Article  CAS  Google Scholar 

  105. J.E. Phillips, K.L. Burns, J.M. Le Doux, R.E. Guldberg, and A.J. García: Engineering graded tissue interfaces. Proc. Natl. Acad. Sci. USA 105, 12170–12175 (2008).

    Article  CAS  Google Scholar 

  106. M. Urist, R. DeLange, and G. Finerman: Bone cell differentiation and growth factors. Science 220, 680–686 (1983).

    Article  CAS  Google Scholar 

  107. T.A. Linkhart, S. Mohan, and D.J. Baylink: Growth factors for bone growth and repair: IGF, TGF and BMP. Bone 19, 1S–12S (1996).

    Article  CAS  Google Scholar 

  108. J.R. Lieberman, A. Daluiski, and T.A. Einhorn: The Role of growth factors in the repair of bone. J. Bone oin Surg. 84, 1032–1044 (2002).

    Article  Google Scholar 

  109. T. Molloy, Y. Wang, and G.A.C. Murrell: The roles of growth factors in tendon and ligament healing. Sport. Med. 33, 381–394 (2003).

    Article  Google Scholar 

  110. R. James, G. Kesturu, G. Balian, and A.B. Chhabra: Tendon: biology, biomechanics, repair, growth factors, and evolving treatment options. J. Hand Surg. Am. 33, 102–112 (2008).

    Article  Google Scholar 

  111. P.M. Van der Kraan, P. Buma, T. Van Kuppevelt, and W.B. Van Den Berg: Interaction of chondrocytes, extracellular matrix and growth factors: relevance for articular cartilage tissue engineering. Osteoarthr. Cartil. 10, 631–637 (2002).

    Article  Google Scholar 

  112. D.J. Baylink, R.D. Finkelman, and S. Mohan: Growth factors to stimulate bone formation. J. Bone Miner. Res. 8, S565–S572 (1993).

    Article  Google Scholar 

  113. C. Li, C. Vepari, H-J. Jin, H.J. Kim, and D.L. Kaplan: Electrospun silk-BMP-2 scaffolds for bone tissue engineering. Biomaterials 27, 3115–3124 (2006).

    Article  CAS  Google Scholar 

  114. N. Kakudo, K. Kusumoto, Y.B. Wang, Y. Iguchi, and Y. Ogawa: Immunolocalization of vascular endothelial growth factor on intramuscular ectopic osteoinduction by bone morphogenetic protein-2. Life Sci. 79, 1847–1855 (2006).

    Article  CAS  Google Scholar 

  115. Z.S. Patel, S. Young, Y. Tabata, J.A. Jansen, M.E.K. Wong, and A.G. Mikos: Dual delivery of an angiogenic and an osteogenic growth factor for bone regeneration in a critical size defect model. Bone 43, 931–940 (2008).

    Article  CAS  Google Scholar 

  116. J.A. Parry, M.G.L. Olthof, K.L. Shogren, M. Dadsetan, A. Van Wijnen, M. Yaszemski, and S. Kakar: Three-dimension-printed porous poly(propylene fumarate) scaffolds with delayed rhBMP-2 release for anterior cruciate ligament graft fixation. Tissue Eng. A 0, 1–7 (2017).

    CAS  Google Scholar 

  117. N. Indrawattana, G. Chen, M. Tadokoro, L.H. Shann, H. Ohgushi, T. Tateishi, J. Tanaka, and A. Bunyaratvej: Growth factor combination for chondrogenic induction from human mesenchymal stem cell. Biochem. Biophys. Res. Commun. 320, 914–919 (2004).

    Article  CAS  Google Scholar 

  118. P. Yilgor, K. Tuzlakoglu, R.L. Reis, N. Hasirci, and V. Hasirci: Incorporation of a sequential BMP-2/BMP-7 delivery system into chitosan-based scaffolds for bone tissue engineering. Biomaterials 30, 3551–3559 (2009).

    Article  CAS  Google Scholar 

  119. J.T. Connelly, C.G. Wilson, and M.E. Levenston: Characterization of proteoglycan production and processing by chondrocytes and BMSCs in tissue engineered constructs. Osteoarthr. Cartil. 16, 1092–1100 (2008).

    Article  CAS  Google Scholar 

  120. B. Johnstone, T.M. Hering, A.I. Caplan, V.M. Goldberg, and J.U. Yoo: In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. Exp. Cell Res. 238, 265–272 (1998).

    Article  CAS  Google Scholar 

  121. R.F. Macbarb, E.A. Makris, J.C. Hu, and K.A. Athanasiou: A chondroitinase-ABC and TGF-β1 treatment regimen for enhancing the mechanical properties of tissue-engineered fibrocartilage. Acta Biomater. 9, 4626–4634 (2012)

    Article  Google Scholar 

  122. R.P. Marini, I. Martin, M.M. Stevens, R. Langer, and V.P. Shastri: FGF-2 enhances TGF-B1 induced periosteal chondrogenesis. J. Orthop. Res. 22, 1114–1119 (2004).

    Article  Google Scholar 

  123. S.M. Imler, A.N. Doshi, and M.E. Levenston: Combined effects of growth factors and static mechanical compression on meniscus explant biosynthesis. Osteoarthr. Cartil. 12, 736–744 (2004).

    Article  Google Scholar 

  124. A. Augst, D. Marolt, L.E. Freed, C. Vepari, L. Meinel, M. Farley, R. Fajardo, N. Patel, M. Gray, D.L. Kaplan, and G. Vunjak-Novakovic: Effects of chondrogenic and osteogenic regulatory factors on composite constructs grown using human mesenchymal stem cells, silk scaffolds and bioreactors. J. R. Soc. Interface 5, 929–939 (2008).

    Article  CAS  Google Scholar 

  125. H. Park, J.S. Temenoff, T.A. Holland, Y. Tabata, and A.G. Mikos: Delivery of TGF-1 and chondrocytes via injectable, biodegradable hydrogels for cartilage tissue engineering applications. Biomaterials 26, 7095–7103 (2005).

    Article  CAS  Google Scholar 

  126. M.B. Mueller, M. Fischer, J. Zellner, A. Berner, T. Dienstknecht, L. Prantl, R. Kujat, M. Nerlich, R.S. Tuan, and P. Angele: Hypertrophy in mesenchymal stem cell chondrogenesis: effect of TGF-β isoforms and chondrogenic conditioning. Cells Tissues Organs 192, 158–166 (2010).

    Article  CAS  Google Scholar 

  127. M. Kim, I.E. Erickson, M. Choudhury, N. Pleshko, and R.L. Mauck: Transient exposure to TGF-B3 improves the functional chondrogenesis of MSC-laden hyaluronic acid hydrogels. J. Mech. Behav. Biomed. Mater. 11, 92–101 (2012).

    Article  CAS  Google Scholar 

  128. E. Farng, A.R.U. Bs, D.B. Bs, S.E. Bs, and D.R. Mcallister: The effects of GDF-5 and uniaxial strain on mesenchymal stem cells in 3-D culture. Clin. Orthop. Relat. Res. 466, 1930–1937 (2008).

    Article  Google Scholar 

  129. R. James, S.G. Kumbar, C.T. Laurencin, G. Balian, and A.B. Chhabra: Tendon tissue engineering: adipose-derived stem cell and GDF-5 mediated regeneration using electrospun matrix systems. Biomed. Mater. 6, 25011 (2011).

    Article  CAS  Google Scholar 

  130. N.I. Aguilar, S. Trippel, S. Shi, and L.J. Bonassar: Customized biomaterials to augment chondrocyte gene therapy. Acta Biomater. 53, 260–267 (2017).

    Article  CAS  Google Scholar 

  131. J.L. Puetzer, B.N. Brown, J.J. Ballyns, and L.J. Bonassar: The effect of IGF-I on anatomically shaped tissue-engineered menisci. Tissue Eng. A 19, 1443–1450 (2013).

    Article  CAS  Google Scholar 

  132. S. Thomopoulos, F.L. Harwood, M.J. Silva, D. Amiel, and R.H. Gelberman: Effect of several growth factors on canine flexor tendon fibroblast proliferation and collagen synthesis in vitro. J. Hand Surg. Am. 30, 441–447 (2005).

    Article  Google Scholar 

  133. C.K. Hee, J.S. Dines, L.A. Solchaga, V.R. Shah, and J.O. Hollinger: Regenerative tendon and ligament healing: opportunities with recombinant human platelet-derived growth factor BB-homodimer. Tissue Eng. B, Rev. 18, 225–234 (2012).

    Article  CAS  Google Scholar 

  134. B.S. Yoon, R. Pogue, D.A. Ovchinnikov, I. Yoshii, Y. Mishina, R.R. Behringer, and K.M. Lyons: BMPs regulate multiple aspects of growth-plate chondrogenesis through opposing actions on FGF pathways. Development 133, 4667–4678 (2006).

    Article  CAS  Google Scholar 

  135. E. Minina, C. Kreschel, M.C. Naski, D.M. Ornitz, and A. Vortkamp: Interaction of FGF, Ihh/Pthlh, and BMP signaling integrates chondrocyte proliferation and hypertrophic differentiation. Dev. Cell 3, 439–449 (2002).

    Article  CAS  Google Scholar 

  136. P.C. Bessa, M. Casal, and R.L. Reis: Bone morphogenetic proteins in tissue engineering: the road from laboratory to clinic, part II (BMP delivery). J. Tissue Eng. Regen. Med. 2, 81–96 (2008).

    Article  CAS  Google Scholar 

  137. N.M. Wolfman, G. Hattersley, K. Cox, A.J. Celeste, R. Nelson, N. Yamaji, J.L. Dube, E. Diblasio-smith, J. Nove, J.J. Song, J.M. Wozney, V. Rosen, N.M. Wolfman, G. Hattersley, K. Cox, and J. Anthony: Ectopic induction of tendon and ligament in rats by growth and differentiation factors 5, 6, and 7, members of the TGF-β gene family. J. Clin. Invest. 100, 321–330 (1997).

    Article  CAS  Google Scholar 

  138. D. Chen, M. Zhao, G.R. Mundy, D. Chen, M. Zhao, G.R. Mundy, and B. Morphogenetic: Bone morphogenetic proteins. Growth Factors 22, 233–241 (2004).

    Article  CAS  Google Scholar 

  139. R.S. Decker, H-B. Um, N.A. Dyment, N. Cottingham, Y. Usami, M. Enomoto-Iwamoto, M.S. Kronenberg, P. Maye, D.W. Rowe, E. Koyama, and M. Pacifici: Cell origin, volume and arrangement are drivers of articular cartilage formation, morphogenesis and response to injury in mouse limbs. Dev. Biol. 426, 56–68 (2017).

    Article  CAS  Google Scholar 

  140. U. Heine, E.F. Munoz, K.C. Flanders, L.R. Ellingsworth, H.Y. Lam, N.L. Thompson, A.B. Roberts, and M.B. Sporn: Role of transforming growth factor-beta in the development of the mouse embryo. J. Cell Biol. 105, 2861–2876 (1987).

    Article  CAS  Google Scholar 

  141. C.M. Leonard, H.M. Fuld, D.A. Frenz, S.A. Downie, J. Massague, and S.A. Newman: Role of transforming growth factor-B in chondrogenic pattern formation in the embryonic limb: stimulation of mesenchymal condensation and fibronectin gene expression by exogenous TGF-B and evidence for endogenous TGF-B-like activity. Dev. Biol. 145, 99–109 (1991).

    Article  CAS  Google Scholar 

  142. W.M. Kulyk, B.J. Rodgers, K. Greer, and R.A. Kosher: Promotion of embryonic chick limb cartilage differentiation by transforming growth factor-B. Dev. Biol. 135, 424–430 (1989).

    Article  CAS  Google Scholar 

  143. O.G.P. Isaksson, J-O. Jansson, and I.A.M. Gause: Growth hormone stimulates longitudinal bone growth. Science 216, 1237–1239 (1982).

    Article  CAS  Google Scholar 

  144. S. Mohan, Y. Nakao, Y. Honda, E. Landale, U. Leser, C. Dony, K. Lang, and D.J. Baylink: Studies on the mechanisms by which insulin-like growth factor (IGF) binding protein-4 (IGFBP-4) and IGFBP-5 modulate IGF actions in bone cells. J. Biol. Chem. 270, 20424–20431 (1995).

    Article  CAS  Google Scholar 

  145. E.B. Hunziker, J. Wagner, and J. Zapf: Differential effects of insulin-like growth factor I and growth hormone on developmental stages of rat growth plate chondrocytes in vivo. J. Clin. Invest. 93, 1078–1086 (1994).

    Article  CAS  Google Scholar 

  146. S.O. Abrahamsson: Similar effects of recombinant human insulin-like growth factor-I and II on cellular activities in flexor tendons of young rabbits: Experimental studies in vitro. J. Orthop. Res. 15, 256–262 (1997).

    Article  CAS  Google Scholar 

  147. V. Midy and J. Plouët: Vasculotropin/vascular endothelial growth factor induces differentiation in cultured osteoblasts. Biochem. Biophys. Res. Commun. 199, 380–386 (1994).

    Article  CAS  Google Scholar 

  148. D.W. Leung, G. Cachianes, W.J. Kuang, D.V. Goeddel, and N. Ferrara: Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 246, 1306–1309 (1989).

    Article  CAS  Google Scholar 

  149. P.J. Keck, S.D. Hauser, G. Krivi, K. Sanzo, T. Warren, J. Feder, and D.T. Connolly: Vascular permeability factor, an endothelial cell mitogen related to PDGF. Science 246, 1309–1312 (1989).

    Article  CAS  Google Scholar 

  150. S.K.C. Sundararaj, R.D. Cieply, G. Gupta, T.A. Milbrandt, and D.A. Puleo: Treatment of growth plate injury using IGF-1 loaded PLGA scaffold. J. Tissue Eng. Regen. Med. 9, E202–E209 (2015).

    Article  CAS  Google Scholar 

  151. K.J. Gooch, T. Blunk, D.L. Courter, A.L. Sieminski, P.M. Bursac, G. Vunjak-Novakovic, and L.E. Freed: IGF-I and mechanical environment interact to modulate engineered cartilage development. Biochem. Biophys. Res. Commun. 286, 909–915 (2001).

    Article  CAS  Google Scholar 

  152. W.L. Murphy, M.C. Peters, D.H. Kohn, and D.J. Mooney: Sustained release of vascular endothelial growth factor from mineralized poly(lactide-co-glycolide) scaffolds for tissue engineering. Biomaterials 21, 2521–2527 (2000).

    Article  CAS  Google Scholar 

  153. A.F. Steinert, G.D. Palmer, R. Capito, J.G. Hofstaetter, C. Pilapil, S.C. Ghivizzani, M. Spector, and C.H. Evans: Genetically enhanced engineering of meniscus tissue using ex vivo delivery of transforming growth factor-beta 1 complementary deoxyribonucleic acid. Tissue Eng. 13, 2227–2237 (2007).

    Article  CAS  Google Scholar 

  154. H.V. Almeida, Y. Liu, G.M. Cunniffe, K.J. Mulhall, A. Matsiko, C.T. Buckley, F.J. O’Brien, and D.J. Kelly: Controlled release of transforming growth factor-β3 from cartilage-extra-cellular-matrix-derived scaffolds to promote chondrogenesis of human-joint-tissue-derived stem cells. Acta Biomater. 10, 4400–4409 (2014).

    Article  CAS  Google Scholar 

  155. A. Hildebrand, M. Romarís, L.M. Rasmussen, D. Heinegård, D.R. Twardzik, W.A. Border, and E. Ruoslahti: Interaction of the small interstitial proteoglycans biglycan, decorin and fibromodulin with transforming growth factor beta. Biochem. J. 302, 527–534 (1994).

    Article  CAS  Google Scholar 

  156. W-N. Qi and S.P. Scully: Extracellular collagen regulates expression of trasforming growth factor-beta1 gene. J. Orthop. Res. 18, 928–932 (2000).

    Article  CAS  Google Scholar 

  157. M. Mongiat, J. Otto, R. Oldershaw, F. Ferrer, J.D. Sato, and R.V. Iozzo: Fibroblast growth factor-binding protein is a novel partner for perlecan protein core. J. Biol. Chem. 276, 10263–10271 (2001).

    Article  CAS  Google Scholar 

  158. R. Ruppert, E. Hoffmann, and W. Sebald: Human bone morphogenetic protein 2 contains a heparin-binding site which modifies its biological activity. Eur. J. Biochem. 237, 295–302 (1996).

    Article  CAS  Google Scholar 

  159. Y. Zhu, A. Oganesian, D.R. Keene, and L.J. Sandell: Type IIA procollagen containing the cysteine-rich amino propeptide is deposited in the extracellular matrix of prechondrogenic tissue and binds to TGF-B1 and BMP-2. J. Cell Biol. 144, 1069–1080 (1999).

    Article  CAS  Google Scholar 

  160. M. Kawecki, W. Łabuś, A. Klama-Baryla, D. Kitala, M. Kraut, J. Glik, M. Misiuga, M. Nowak, T. Bielecki, and A. Kasperczyk: A review of decellurization methods caused by an urgent need for quality control of cell-free extracellular matrix’ scaffolds and their role in regenerative medicine. J. Biomed. Mater. Res. Part B Appl. Biomater. 1–15 (2017). doi: 10.1002/jbm.b.33865.

    Google Scholar 

  161. S. Farnebo, C.Y. Woon, M. Kim, H. Pham, and J. Chang: Reconstruction of the tendon-bone insertion with decellularized tendon-bone composite grafts: comparison with onventional repair. J. Hand Surg. Am. 39, 65–74 (2014).

    Article  Google Scholar 

  162. A.G. Schwartz, J.H. Lipner, J.D. Pasteris, G.M. Genin, and S. Thomopoulos: Muscle loading is necessary for the formation of a functional tendon enthesis. Bone 55, 44–51 (2013).

    Article  CAS  Google Scholar 

  163. H. Lin, T.P. Lozito, P.G. Alexander, R. Gottardi, and R.S. Tuan: Stem cell-based microphysiological osteochondral system to model tissue response to interleukin-1 β. Mol. Pharm. 11, 2203–2212 (2014).

    Article  CAS  Google Scholar 

  164. W.L. Grayson, S. Bhumiratana, P.H. Grace Chao, C.T. Hung, and G. Vunjak-Novakovic: Spatial regulation of human mesenchymal stem cell differentiation in engineered osteochondral constructs: effects of pre-differentiation, soluble factors and medium perfusion. Osteoarthr. Cartil. 18, 714–723 (2010).

    Article  CAS  Google Scholar 

  165. S.M. Goldman and G.A. Barabino: Spatial Engineering of osteochondral tissue constructs through microfluidically directed differentiation of mesenchymal stem cells. Biores. Open Access 5.1, 109–117 (2016).

    Article  Google Scholar 

  166. N. Jaiswal, S.E. Haynesworth, A.I. Caplan, and S.P. Bruder: Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. J. Cell. Biochem. 64, 295–312 (1997).

    Article  CAS  Google Scholar 

  167. W.L. Grayson, M. Fröhlich, K. Yeager, S. Bhumiratana, M.E. Chan, C. Cannizzaro, L.Q. Wan, X.S. Liu, X.E. Guo, and G. Vunjak-Novakovic: Engineering anatomically shaped human bone grafts. Proc. Natl. Acad. Sci. USA 107, 3299–3304 (2010).

    Article  CAS  Google Scholar 

  168. A.L. Boskey and R. Roy: Cell culture systems for studies of bone and tooth mineralization. Chem. Rev. 108, 4716–4733 (2008).

    Article  CAS  Google Scholar 

  169. R-I. Hata and H. Senoo: L-Ascorbic acid 2-phosphate stimulates collagen accumulation, cell proliferation, and formation of a three-dimensional tissue like substance by skin fibroblasts. J. Cell. Physiol. 138, 8–16 (1989).

    Article  CAS  Google Scholar 

  170. R.I. Schwarz, P. Kleinman, and N. Owens: Ascorbate can act as an inducer of the collagen pathway because most steps are tightly coupled. Ann. New York Acad. Sci. 498, 172–185 (1987).

    Article  CAS  Google Scholar 

  171. Q. Li, F. Qu, B. Han, R. Mauck, L. Han, and D. Ph: Micromechanical heterogeneity and anisotropy of the meniscus extracellular matrix. Acta Biomater. 54, 356–366 (2017).

    Article  Google Scholar 

  172. S.M. Goldman and G.A. Barabino: Cultivation of agarose-based microfluidic hydrogel promotes the development of large, full-thickness, tissue-engineered articular cartilage constructs. J. Tissue Eng. Regen. Med. 11, 572–581 (2014).

    Article  Google Scholar 

  173. S. Thomopoulos, J.P. Marquez, B. Weinberger, V. Birman, and G.M. Genin: Collagen fiber orientation at the tendon to bone insertion and its influence on stress concentrations. J. Biomech. 39, 1842–1851 (2006).

    Article  Google Scholar 

  174. D.F. Villegas, T.A. Hansen, D.F. Liu, and T.L. Haut Donahue: A quantitative study of the microstructure and biochemistry of the medial meniscal horn attachments. Ann. Biomed. Eng. 36, 123–131 (2008).

    Article  Google Scholar 

  175. D.F. Villegas, and T.L. Haut Donahue: Collagen morphology in human meniscal attachments: a SEM study. Connect. Tissue Res. 51, 327–336 (2010).

    Article  Google Scholar 

  176. D.F. Villegas, J.A. Maes, S.D. Magee, and T.L. Haut Donahue: Failure properties and strain distribution analysis of meniscal attachments. J. Biomech. 40, 2655–2662 (2007).

    Article  Google Scholar 

  177. Y. Hu, V. Birman, A. Demyier-Black, A.G. Schwartz, S. Thomopoulos, and G.M. Genin: Stochastic interdigitation as a toughening mechanism at the interface between tendon and bone. Biophys. J. 108, 431–437 (2015).

    Article  CAS  Google Scholar 

  178. H.M. Kim, L.M. Galatz, N. Patel, R. Das, and S. Thomopoulos: Recovery potential after postnatal shoulder paralysis. J. Bone Jt. Surg. 91, 879–891 (2009).

    Article  Google Scholar 

  179. S. Thomopoulos, G.R. Williams, and L.J. Soslowsky: Tendon to bone healing: differences in biomechanical, structural, and compositional properties due to a range of activity levels. J. Biomech. Eng. 125, 106 (2003).

    Article  CAS  Google Scholar 

  180. C.R. Clark and J.A. Ogden: Prenatal and postnatal development of human knee joint mensci. Iowa Orthop. J. 1, 20–27 (1981).

    Google Scholar 

  181. D. Huang, T.R. Chang, A. Aggarwal, R.C. Lee, H.P. Ehrlich: Mechanisms and dynamics of mechanical strengthening in ligament-equivalent fibroblast-populated collagen matrices. Ann. Biomed. Eng. 21, 289–305 (1993).

    Article  CAS  Google Scholar 

  182. S. Thomopoulos, G.M. Fomovsky, and J.W. Holmes: The development of structural and mechanical anisotropy in fibroblast populated collagen gels. J. Biomech. Eng. 127, 742–750 (2005).

    Article  Google Scholar 

  183. F. Grinnell: Fibroblast-collagen-matrix contraction: growth-factor signalling and mechanical loading. Trends Cell Biol. 10, 362–365 (2000).

    Article  CAS  Google Scholar 

  184. K.D. Costa, E.J. Lee, and J.W. Holmes: Creating alignment and anisotropy in engineered heart tissue: role of boundary conditions in a model three-dimensional culture system. Tissue Eng. 9, 567–577 (2003).

    Article  Google Scholar 

  185. V.S. Nirmalanandhan, M.S. Levy, A.J. Huth, and D.L. Butler: Effects of cell seeding density and collagen concentration on contraction kinetics of mesenchymal stem cell-seeded collagen constructs. Tissue Eng. 12, 1865–1872 (2006).

    Article  CAS  Google Scholar 

  186. R.G. Young, D.L. Butler, W. Weber, A.I. Caplan, S.L. Gordon, and D.J. Fink: Use of mesenchymal stem cells in a collagen matrix for Achilles tendon repair. J. Orthop. Res. 16, 406–413 (1998).

    Article  CAS  Google Scholar 

  187. H.A. Awad, D.L. Butler, M.T. Harris, R.E. Ibrahim, Y. Wu, R.G. Young, S. Kadiyala, G.P. Boivin: In vitro characterization of mesenchymal stem cell-seeded collagen scaffolds for tendon repair: effects of initial seeding density on contraction kinetics. J. Biomed. Mater. Res. 51, 233–240 (2000).

    Article  CAS  Google Scholar 

  188. R.D. Bowles, R.M. Williams, W.R. Zipfel, and L.J. Bonassar: Self-assembly of aligned tissue-engineered annulus fibrosus and intervertebral disc composite via collagen gel contraction. Tissue Eng. Part A 16, 1339–1348 (2010).

    Article  CAS  Google Scholar 

  189. J.L. Puetzer, I. Sallent, A. Gelmi, and M.M. Stevens: Investigating collagen fiber formation for functional musculoskeletal engineering: going beyond the fibril. ORS 2017 Annual Meeting, San Diego, CA, Session No. 50, Vol. 42, Paper No. 348, 2017.

  190. D.J. Huey and K.A. Athanasiou: Tension-compression loading with chemical stimulation results in additive increases to functional properties of anatomic meniscal constructs. PLoS ONE 6, e27857 (2011).

    Article  CAS  Google Scholar 

  191. J.L. Puetzer and L.J. Bonassar: Physiologically distributed loading patterns drive the formation of zonally organized collagen structures in tissue engineered meniscus. Tissue Eng. A 22, 907–916 (2016).

    Article  CAS  Google Scholar 

  192. C.T. Hendley, J. Tao, J.A. Kunitake, J.J. De Yoreo, and L.A. Estroff: Microscopy techniques for investigating the control of organic constituents on biomineralization. MRS Bull. 40, 480–489 (2015).

    Article  CAS  Google Scholar 

  193. H. Wang, A.O. Gee, I.D. Hutchinson, K. Stoner, R.F. Warren, T.O. Chen and S.A. Maher: Bone plug versus suture-only fixation of meniscal grafts: effect on joint contact mechanics during simulated gait. Am. J. Sports Med. 42, 1682–1689 (2014).

    Article  Google Scholar 

  194. K.A. Ross, R.M. Williams, L.V. Schnabel, H.O. Mohammed, H.G. Potter, G. Bradica, E. Castiglione, S.L. Pownder, P.W. Satchell, R.A. Saska, and L.A. Fortier: Comparison of three methods to quantify repair cartilage collagen orientation. Cartilage 4, 111–120 (2013).

    Article  CAS  Google Scholar 

  195. N.T. Khanarian, M.K. Boushell, J.P. Spalazzi, N. Pleshko, A.L. Boskey, and H.H. Lu: FTIR-I compositional mapping of the cartilage-to-bone interface as a function of tissue region and age. J. Bone Miner. Res. 29, 1–26 (2014).

    Article  Google Scholar 

  196. J.C. Mansfield, J. Moger, E. Green, C. Moger, and C.P. Winlove: Chemically specific imaging and in-situ chemical analysis of articular cartilage with stimulated Raman scattering. J. Biophotonics 6, 803–814 (2013).

    CAS  Google Scholar 

  197. S. Yamanaka: A fresh look at iPS cells. Cell 137, 13–17 (2009).

    Article  CAS  Google Scholar 

  198. E.S. Lander: The heroes of CRISPR. Cell 164, 18–28 (2016).

    Article  CAS  Google Scholar 

  199. N.W. Choi, M. Cabodi, B. Held, J.P. Gleghorn, L.J. Bonassar, and A.D. Stroock: Microfluidic scaffolds for tissue engineering. Nat. Mater. 6, 908–915 (2007).

    Article  CAS  Google Scholar 

  200. R.R. Jose, M.J. Rodriguez, T.A. Dixon, F. Omenetto, and D.L. Kaplan: Evolution of bioinks and additive manufacturing technologies for 3D bioprinting. ACS Biomater. Sci. Eng. 2, 1662–1678 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge support from the National Center for Advancing Translational Sciences (NCATS) grant TL1TR000459 of the Clinical and Translational Science Center at Weill Cornell Medical College, and A.J.B. acknowledges a pre-doctoral fellowship award (F31AR070009) from the National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS) of the National Institutes of Health (NIH). The authors would like to thank Leanne Iannucci, Benjamin Cohen, and Jongkil Kim for critical reading of the manuscript and Mary Lou Norman for preparing histological sections.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lawrence J. Bonassar or Lara A. Estroff.

Additional information

Authors contributed equally to the manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boys, A.J., McCorry, M.C., Rodeo, S. et al. Next generation tissue engineering of orthopedic soft tissue-to-bone interfaces. MRS Communications 7, 289–308 (2017). https://doi.org/10.1557/mrc.2017.91

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2017.91

Navigation