Skip to main content
Log in

A Quantitative Study of the Microstructure and Biochemistry of the Medial Meniscal Horn Attachments

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Little quantitative data is available on the structure of meniscal attachments. Therefore, as an aid to designing meniscal replacements as well as a possible explanation for mechanical behavior, this study was designed to further the knowledge of the microstructure and biochemistry of native meniscal attachments. Bovine medial meniscal attachments (the external ligamentous portion as well as the transition zones at the bony insertion) were removed and prepared for microstructural evaluation. After embedding in paraffin, the samples were sliced on a microtome and stained for quantitative analysis. The anterior and posterior insertion sites are known to contain three zones: subchondral bone, calcified fibrocartilage, and uncalcified fibrocartilage. Additionally, others have shown that the anterior insertion site contains a ligamentous zone. The insertion zones were further divided into proximal, middle, and distal zones. The posterior attachment’s insertion site had a significantly greater thickness of interdigitations, subchondral bone, uncalcified fibrocartilage, and calcified fibrocartilage zone thickness compared to the anterior attachment insertion. The anterior attachment’s insertion had the greatest GAG fraction in each zone when compared to the posterior attachment’s insertion. GAG fraction decreased from the meniscus to the subchondral bone. Both GAG fraction and normalized thickness varied within a given zone, decreasing from the distal to proximal regions in both the anterior and posterior attachments’ insertion zones. Crimp frequency of the collagen fibrils in the external ligamentous portion of the tissue was homogeneous along the length. The findings from this study agree with previously published material property data on the medial meniscal attachments, and could be used in the future to design methods of attachment for tissue engineered replacement menisci.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Adams M.E., Y.A. Ho. Localization of glycosaminoglycans in human and canine menisci and their attachments. Connect Tissue Res. 16(3): p. 269–279, 1987

    Article  PubMed  CAS  Google Scholar 

  2. Adams M.E., C.A. McDevitt, A. Ho, H. Muir. Isolation and characterization of high-buoyant-density proteoglycans from semilunar menisci. J. Bone Joint Surg. Am. 68(1): p. 55–64, 1986

    PubMed  CAS  Google Scholar 

  3. Adams M.E., H. Muir, The glycosaminoglycans of canine menisci, Biochem. J. 197(2): p. 385–389, 1981

    PubMed  CAS  Google Scholar 

  4. Ahmed A.M., D.L. Burke, In-vitro measurement of static pressure distribution in synovial joints–part i: tibial surface of the knee. J. Biomech. Eng. 105(3): p. 216–225, 1983

    PubMed  CAS  Google Scholar 

  5. Alhalki M.M., S.M. Howell, M.L. Hull, How three methods for fixing a medial meniscal autograft affect tibial contact mechanics. Am. J. Sports Med. 27(3): p. 320–328, 1999

    PubMed  CAS  Google Scholar 

  6. Ali A.F., M.M. Taha, G.M. Thornton, N.G. Shrive, C.B. Frank, Biomechanical study using fuzzy systems to quantify collagen fiber recruitment and predict creep of the rabbit medial collateral ligament. J. Biomech. Eng. 127(3): p. 484–493, 2005

    Article  PubMed  CAS  Google Scholar 

  7. Atkinson, T., and R. C. Haut. The influence of collagen fiber orientation on tendon creep and relaxation, Tran. ORS, 46th annual meeting, p. 779, 2000

  8. Benjamin M., E.J. Evans, R.D. Rao, J.A. Findlay, D.J. Pemberton, Quantitative differences in the histology of the attachment zones of the meniscal horns in the knee joint of man. J. Anat., 177: p. 127–134, 1991

    PubMed  CAS  Google Scholar 

  9. Benjamin M., J.R. Ralphs, Fibrocartilage in tendons and ligaments—an adaptation to compressive load. J. Anat. 193(Pt 4): p. 481–494, 1998

    Article  PubMed  Google Scholar 

  10. Boorman R.S., T. Norman, F.A. Matsen 3rd, J.M. Clark, Using a freeze substitution fixation technique and histological crimp analysis for characterizing regions of strain in ligaments loaded in situ. J. Orthop. Res. 24(4): p. 793–799, 2006

    Article  PubMed  Google Scholar 

  11. Burks R.T., M.H. Metcalf, R.W. Metcalf, Fifteen-year follow-up of arthroscopic partial meniscectomy. Arthroscopy 13(6): p. 673–679,1997

    Article  PubMed  CAS  Google Scholar 

  12. Chen M.I., T.P. Branch, W.C. Hutton, Is it important to secure the horns during lateral meniscal transplantation? A cadaveric study. Arthroscopy 12(2):174–181, 1996

    Article  PubMed  CAS  Google Scholar 

  13. Diamant, J. Collagen; Ultrastructure and its Relation to Mechanical Properties as a Function of Ageing. Proc. R. Soc. Lond. Ser-B 180(60):293–315, 1972

  14. Donahue T.L., C. Gregersen, M.L. Hull, S.M. Howell, Comparison of viscoelastic, structural, and material properties of double-looped anterior cruciate ligament grafts made from bovine digital extensor and human hamstring tendons. J. Biomech. Eng. 123(2):162–169, 2001

    Article  PubMed  CAS  Google Scholar 

  15. Englund M., E.M. Roos, H.P. Roos, L.S. Lohmander, Patient-relevant outcomes fourteen years after meniscectomy: Influence of type of meniscal tear and size of resection. Rheumatology (Oxford), 40(6):631–639, 2001

    Article  CAS  Google Scholar 

  16. Gao J., Immunolocalization of types i, ii, and x collagen in the tibial insertion sites of the medial meniscus. Knee Surg. Sport Traumatol. Arthrosc. 8(1):61–65, 2000

    Article  CAS  Google Scholar 

  17. Gao J., K. Messner, Quantitative comparison of soft tissue-bone interface at chondral ligament insertions in the rabbit knee joint. J. Anat. 188(Pt 2): 367–373, 1996

    PubMed  Google Scholar 

  18. Gao J., G. Oqvist, K. Messner, The attachments of the rabbit medial meniscus. A morphological investigation using image analysis and immunohistochemistry. J. Anat. 185(Pt 3):663–667, 1994

    PubMed  Google Scholar 

  19. Gao J., T. Rasanen, J. Persliden, K. Messner, The morphology of ligament insertions after failure at low strain velocity: An evaluation of ligament entheses in the rabbit knee. J. Anat. 189 (Pt 1):127–133, 1996

    PubMed  Google Scholar 

  20. Gao, J., X. Wei, and K. Messner. Healing of the anterior attachment of the rabbit meniscus to bone. Clin. Orthop. (348):246–58, 1998

  21. Gillard G.C., H.C. Reilly, P.G. Bell-Booth, M.H. Flint, The influence of mechanical forces on the glycosaminoglycan content of the rabbit flexor digitorum profundus tendon. Connect Tissue Res. 7(1):37–46, 1979

    Article  PubMed  CAS  Google Scholar 

  22. Goertzen D., J. Gillquist, K. Messner, Tensile strength of the tibial meniscal attachments in the rabbit. J. Biomed. Mater. Res. 30(1):125–128, 1996

    Article  PubMed  CAS  Google Scholar 

  23. Hansen K.A., J.A. Weiss, J.K. Barton, Recruitment of tendon crimp with applied tensile strain. J. Biomech. Eng. 124(1):72–77, 2002

    Article  PubMed  Google Scholar 

  24. Haut Donahue T.L., M.L. Hull, M.M. Rashid, C.R. Jacobs, How the stiffness of meniscal attachments and meniscal material properties affect tibio-femoral contact pressure computed using a validated finite element model of the human knee joint. J. Biomech. 36(1):19–34, 2003

    Article  PubMed  Google Scholar 

  25. Heinegård D., A. Oldberg, Glycosylated matrix proteins. In: Connective Tissue and its Heritable Disorders, P.M. Royce, B. Steinmann, Editors. 1993, Wiley Liss: New York. p. 189–209

    Google Scholar 

  26. Huang Q., D. Opstelten, N. Samman, H. Tideman, Experimentally induced unilateral tooth loss: Histochemical studies of the temporomandibular joint. J. Dent. Res. 81(3):209–213, 2002

    Article  PubMed  CAS  Google Scholar 

  27. Ilic M.Z., P. Carter, A. Tyndall, J. Dudhia, C.J. Handley, Proteoglycans and catabolic products of proteoglycans present in ligament. Biochem. J. 385(Pt 2):381–388, 2005

    PubMed  CAS  Google Scholar 

  28. Joshi M.D., J.K. Suh, T. Marui, S.L. Woo, Interspecies variation of compressive biomechanical properties of the meniscus. J. Biomed. Mater. Res. 29(7):823–828, 1995

    Article  PubMed  CAS  Google Scholar 

  29. Kadler K.E., D.F. Holmes, J.A. Trotter, J.A. Chapman, Collagen fibril formation. Biochem. J. 316(Pt 1):1–11, 1996

    PubMed  CAS  Google Scholar 

  30. LeRoux M.A., L.A. Setton, Experimental and biphasic fem determinations of the material properties and hydraulic permeability of the meniscus in tension. J. Biomech. Eng. 124(3):315–321, 2002

    Article  PubMed  Google Scholar 

  31. Maes J.A., T.L. Haut Donahue, Time dependent properties of bovine meniscal attachments: Stress relaxation and creep. J. Biomech. 39(16):3055–3061, 2006

    Article  PubMed  Google Scholar 

  32. Merrilees M.J., M.H. Flint, Ultrastructural study of tension and pressure zones in a rabbit flexor tendon. Am. J. Anat. 157(1):87–106, 1980

    Article  PubMed  CAS  Google Scholar 

  33. Messner K., J. Gao, The menisci of the knee joint. Anatomical and functional characteristics, and a rationale for clinical treatment. J. Anat. 193(Pt 2):1617178, 1998

    Article  PubMed  CAS  Google Scholar 

  34. Moriggl B., P. Jax, S. Milz, A. Buttner, M. Benjamin, Fibrocartilage at the entheses of the suprascapular (superior transverse scapular) ligament of man—a ligament spanning two regions of a single bone. J. Anat. 199(Pt 5):539–545, 2001

    Article  PubMed  CAS  Google Scholar 

  35. Mow V.C., W. Zhu, A. Ratcliffe, Structure and function of articular cartilage and meniscus. In: Basic Orthopaedic Biomechanics, V.C. Mow, Hayes W.C., Editor. 1991, Raven Press: New York

    Google Scholar 

  36. Nordin M., V.H. Frankel, Basic Biomechanics of the Musculoskeletal System. 1980, Philadelphia: Lea & Fibiger

    Google Scholar 

  37. Roughley P.J., R.J. White, The dermatan sulfate proteoglycans of the adult human meniscus. J. Orthop. Res. 10(5):631–637, 1992

    Article  PubMed  CAS  Google Scholar 

  38. Scott P.G., T. Nakano, C.M. Dodd, Isolation and characterization of small proteoglycans from different zones of the porcine knee meniscus. Biochim. Biophys. Acta 1336(2):254–262, 1997

    PubMed  CAS  Google Scholar 

  39. Setton, L.A., F. Guilak, E.W. Hsu, and T.P. Vail. Biomechanical factors in tissue engineered meniscal repair. Clin. Orthop. (367 Suppl):S254–S272, 1999

  40. Shoemaker S.C., K.L. Markolf, The role of the meniscus in the anterior-posterior stability of the loaded anterior cruciate-deficient knee. Effects of partial versus total excision. J. Bone Joint Surg. Am. 68(1):71–79, 1986

    PubMed  CAS  Google Scholar 

  41. Smith G.N., E.A. Mickler, M.E. Albrecht, S.L. Myers, K.D. Brandt, Severity of medial meniscus damage in the canine knee after anterior cruciate ligament transection. Osteoarthr. Cartilage 10(4):321–326, 2002

    Article  CAS  Google Scholar 

  42. Sweigart M.A., K.A. Athanasiou, Toward tissue engineering of the knee meniscus, Tissue Eng. 7(2):111–129, 2001

    Article  PubMed  CAS  Google Scholar 

  43. Sweigart M.A., C.F. Zhu, D.M. Burt, P.D. DeHoll, C.M. Agrawal, T.O. Clanton, K.A. Athanasiou, Intraspecies and interspecies comparison of the compressive properties of the medial meniscus. Ann. Biomed. Eng. 32(11):1569–1579, 2004

    Article  PubMed  CAS  Google Scholar 

  44. Upton M.L., A. Hennerbichler, B. Fermor, F. Guilak, J.B. Weinberg, L.A. Setton, Biaxial strain effects on cells from the inner and outer regions of the meniscus. Connect Tissue Res. 47(4):207–214, 2006

    Article  PubMed  Google Scholar 

  45. Valiyaveettil M., J.S. Mort, C.A. McDevitt, The concentration, gene expression, and spatial distribution of aggrecan in canine articular cartilage, meniscus, and anterior and posterior cruciate ligaments: a new molecular distinction between hyaline cartilage and fibrocartilage in the knee joint. Connect Tissue Res. 46(2):83–91, 2005

    Article  PubMed  CAS  Google Scholar 

  46. Villegas D.F., J.A. Maes, S.D. Magee, T.L. Haut Donahue, Failure properties and strain distribution analysis of meniscal attachments. J. Biomech. 40(12):2655–2662, 2007

    Article  PubMed  Google Scholar 

  47. Woo S.L., G.A. Livesay, T.J. Runco, E.P. Young, Structure and function of tendons and ligaments. In: Basic Orthopaedic Biomechanics, V.C. Mow, W.C. Hayes, Editors. 1997, Lippincott-Raven: Philadelphia. p. 209–252

    Google Scholar 

Download references

Acknowledgments

This study was supported in part by the Michigan Space Grant Consortium, the MTU SURF program, and the National Institutes of Health (AR051906-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tammy L. Haut Donahue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Villegas, D.F., Hansen, T.A., Liu, D.F. et al. A Quantitative Study of the Microstructure and Biochemistry of the Medial Meniscal Horn Attachments. Ann Biomed Eng 36, 123–131 (2008). https://doi.org/10.1007/s10439-007-9403-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-007-9403-x

Keywords

Navigation