Skip to main content
Log in

Identification of microbiota associated with Pectinatella magnifica in South Bohemia

  • Published:
Biologia Aims and scope Submit manuscript

Abstract

The bacterial diversity of Pectinatella magnifica colonies sampled from pounds in South Bohemia during the summer of 2012 was investigated. The bacterial counts determined after cultivation on modified yeast extract-tryptone agar (Oxoid) supplemented with glucose (1 g L−1) varied from 4.22 to 6.61 and from 1.30 to 6.85 log CFU/g for aerobes and anaerobes, respectively. Higher counts were found in the superficial structures of Pectinatella colonies than in the inner gelled mass. Neither a trend in bacterial numbers at the individual site during the season, nor correlations between bacterial counts in P. magnifica and the surrounding water were observed. Fifty-four isolates were identified by sequencing the 16S rRNA gene and through MALDI-TOF MS analysis. Species of Aeromonas and Aquitalea were the predominantly isolated bacteria, but members of Chryseobacterium, Herbaspirillum, Enterobacter, Lactococcus, Leuconostoc, Pseudomonas and Sphingomonas were also found. As listed genera are wildly distributed in different water, soil, and plant samples, we conclude that Pectinatella colonies are inhabited by environmental bacteria. Nevertheless, a symbiotic relationship of these bacteria with P. magnifica cannot be excluded.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson C.M. & Haygood M.G. 2007. α-Protobacterial symbionts of marine bryozoans in the genus Watersipora. Appl. Environ. Microbiol. 73: 303–311. DOI: 10.1128/AEM.00604-06

    Article  CAS  Google Scholar 

  • Balounová Z., Rajchard J., Švehla J. & Šmahel L. 2011. The onset of invasion of bryozoan Pectinatella magnifica in South Bohemia (Czech Republic). Biologia 66: 1091–1096. DOI: 10.2478/s11756-011-0118-y

    Article  Google Scholar 

  • Bernauer D. & Jansen W. 2006. Recent invasions of alien macroinvertebrates and loss of native species in upper Rhine River, Germany. Aquatic Invasions 2: 55–71. DOI 10.3391/ai.2006.1.2.2

    Article  Google Scholar 

  • Canning E.U., Refardt D., Vossbrinck Ch.R., Okamura B. & Curry A. 2002. New diplokaryotic microsporidia (Phylum Microsporidia) from freshwater bryozoans (Bryozoa, Phylacto-laemata). Eur. J. Protistol. 38: 247–265. DOI: 10.1078/0932-4739-00867

    Article  Google Scholar 

  • Denner E.B.M., Paukner S., Kämpfer P., Moore E.R.B., Abraham W.R., Busse H.J., Wanner G. & Lubitz W. 2001. Sphingomonas pituitosa sp. nov., an exopolysaccharide-producing bacterium that secretes an unusual type of sphingan. Int. J. Syst. Evol. Microbiol. 51: 827–841. DOI: 10.1099/00207713-51-3-827

    Article  CAS  Google Scholar 

  • Ding L. & Yokota A. 2004. Proposals of Curvibacter gracilis gen nov., sp. nov. and Herbaspirillum putei sp. nov. for bacterial strains isolated from well water and reclassification of [Pseudomonas] huttiensis, [Pseudomonas] lanceolata, [Aquaspirillum] delicatum and [Aquaspirillum]autotrophicum as Herbaspirillum huttiense comb. nov., Curvibacter lanceolatus comb. nov., Curvibacter delicatus comb. nov. and Herbaspirillum autotrophicum comb. nov. Int. J. Syst. Evol. Microbiol. 54: 2223–2230. DOI: 10.1099/ijs.0.02975-0

    Article  CAS  Google Scholar 

  • Dobritsa A.P., Reddy M.C.S. & Samadpour M. 2010. Reclassification of Herbaspirillum putei as a later heterotypic synonym of Herbaspirillum huttiense, with the description of H. huttiense subsp. huttiense subsp. nov. and H. huttiense subsp. putei subsp. nov., and description of Herbaspirillumaquaticum sp. nov. Int. J. Syst. Evol. Microbiol. 60: 1418–1426. DOI: 10.1099/ijs.0.009381-0

    Article  Google Scholar 

  • Forster R.J., Teather R.M., Gong J. & Deng S.J. 1995. 16S rRNA analysis of Butyrivibrio fibrisolvens: phylogenetic position and relation to butyrate producing anaerobic bacteria from the rumen of a shorttailed deer. Lett. Appl. Microbiol. 23: 218–222. PMID: 8987694

    Article  Google Scholar 

  • González J.M., Whitman W.B., Hodson R.E. & Moran M.A. 1996. Identifying numerically abundant culturable bacteria from complex communities: an example from a lignin enrichment culture. Appl. Environ. Microbiol. 62: 4433–4440. PM-CID: PMC168269

    PubMed  PubMed Central  Google Scholar 

  • Grimont P.A.D. & Grimont F. 2005. Enterobacter. pp. 661–669. In: Brenner D.J., Krieg N.R. & Staley J.T. (eds), Bergey’s Manual of Systematic Bacteriology, Springer, New York, USA.

    Google Scholar 

  • Hall T.A. 1999. BioEdit: a userfriendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acids. Symp. Ser. 41: 95–98.

    CAS  Google Scholar 

  • Herzog P., Winkler I., Wolking D., Kämpfer P. & Lipski A. 2008. Chryseobacterium ureilyticum sp. nov., Chryseobacterium gambrini sp. nov., Chryseobacterium pallidum sp. nov. and Chryseobacterium molle sp. nov., isolated from beerbottling plants. Int. J. Syst. Evol. Microbiol. 58: 26–33. DOI: 10.1099/ijs.0.65362-0

    Article  CAS  Google Scholar 

  • Holzapfel W.H., Björkroth J.A. & Dicks L.M.T. 2009. Leuconostoc. pp. 624–635. In: De Vos P., Garrity G.M., Jones D., Krieg N.R., Ludwig W., Rainey F.A., Schleifer K.H. & Whitman W.B. (eds), Bergey’s Manual of Systematic Bacteriology, Vol 3, The Firmicutes, Springer, New York, USA, 1450 pp. DOI: 10.1007/978-0-387-68489-5, ISBN: 978-0-387-95041-9

    Google Scholar 

  • Indergand S. & Graf J. 2000. Ingested blood contributes to the specificity of the symbiosis of Aeromonas veronii biovar so-bria and Hirudo medicinalis, the medicinal leech. Appl. Environ. Microbiol. 66: 4735–4741. PMID: 11055917

    Article  CAS  Google Scholar 

  • Joo G.J., Ward A.K. & Ward G.M. 1992. Ecology of Pectinatella magnifica (Bryozoa) in an Alabama Oxbow lake: Colony growth and association with algae. J. N. Am. Benthol. Soc. 11: 324–333.

    Article  Google Scholar 

  • Kämpfer P., Chandel K., Prasad G.B.K.S., Shouche Y.S. & Veer V. 2010. Chryseobacterium culicis sp. nov., isolated from the midgut of the mosquito Culex quinquefasciatus. Int. J. Syst. Evol. Microbiol. 60: 2387–2391. DOI: 10.1099/ijs.0.019794-0

    Article  Google Scholar 

  • Kmeť V. & Drugdová Z. 2012. Antimicrobial susceptibility of microflora from ovine cheese. Folia Microbiol. 57: 291–293. DOI: 10.1007/s12223-012-0128-3

    Article  Google Scholar 

  • Lau H.T., Faryna J. & Triplett E.W. 2006. Aquitalea magnusonii gen. nov., sp. nov., a novel Gram-negative bacterium isolated from a humic lake. Int. J. Syst. Evol. Microbiol. 56: 867–871. DOI: 10.1099/ijs.0.64089-0

    Article  CAS  Google Scholar 

  • Lee C.M., Weon H.Y., Kim Y.J., Son J.A., Yoon S.H., Koo B.S. & Kwon S.W. 2009. Aquitalea denitrificans sp. nov., isolated from a Korean wetland. Int. J. Syst. Evol. Microbiol. 59: 1045–1048. DOI: 10.1099/ijs.0.002840-0

    Article  CAS  Google Scholar 

  • Lim G.E. & Haygood M.G. 2004. ‘Candidatus Endobugula glebosa’ a specific bacterial symbiont of the marine bryozoan Bugula simplex. Appl. Environ. Microbiol. 70: 4921–4929. DOI: 10.1128/AEM.70.8.4921-4929.2004

    Article  CAS  Google Scholar 

  • Lim-Fong G.E., Regali L.A. & Haygood M.G. 2008. Evolutionary relationships of ‘Candidatus Endobugula’ bacterial symbionts and their Bugula bryozoan hosts. Appl. Environ. Microbiol. 74: 3605–3609. DOI: 10.1128/AEM.02798-07

    Article  CAS  Google Scholar 

  • Maidak B.L., Larsen N., McCaughey M.J., Overbeek R., Olsen G.J., Forgel K., Blandy J. & Woese C.R. 1994. The ribosomal database project. Nucl. Acids Res. 22: 3485–3487. DOI: 10.1093/nar/24.1.82

    Article  CAS  Google Scholar 

  • Opravilová V. 2006. Bryozoa–mechovky, p. 366. In: Mlíkovský J. & Stýblo P. (eds), Nepůvodní druhy fauny a flóry České republiky, ČSOP, Praha, CZ, 496 pp. ISBN: 80-86770-17-6

    Google Scholar 

  • Pukall R., Kramer I., Rohde M. & Stackebrandt E. 2001. Microbial diversity of cultivatable bacteria associated with the North Sea bryozoan Flustra foliacea. Syst. Appl. Microbiol. 24: 623–633. DOI: 10.1078/0723-2020-00073

    Article  CAS  Google Scholar 

  • Rodriguez S. & Vergon J.P. 2002. Pectinatella magnifica Leidy 1851 (Phylactolaemates), a species of Bryozoa introduced in the north of Franche-Comte. Bull. Fr. P˛eche Piscic. 365–366: 281–296.

    Article  Google Scholar 

  • Silver A.C., Williams D., Faucher J., Horneman A.J., Gogarten J.P. & Graf J. 2011. Complex evolutionary history of Aeromonas veronii group revealed by host interaction and DNA sequence data. Plos One 6:e16751. DOI: 10.1371/jour-nal.pone.0016751

  • Teuber M. 2009. Lactococcus. pp. 711–722. In: De Vos P., Garrity G.M., Jones D., Krieg N.R., Ludwig W., Rainey F.A., Schleifer K.H. & Whitman W.B. (eds), Bergey’s Manual of Systematic Bacteriology, Vol 3, The Firmicutes, Springer, New York, USA, 1450 pp. DOI: 10.1007/978-0-387-68489-5, ISBN: 978-0-387-95041-9

    Google Scholar 

  • Thompson J.D., Gibson T.J., Plewniak F., Jeanmougin F., Higgins D.G. 1997. The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl. Acids Res. 24: 4876–4882. PMID: 9396791

    Article  Google Scholar 

  • Tvrzová L., Schumann P., Spröer C., Sedláček I., Páčová Z., Šedo O., Zdráhal Z., Steffen M. & Lang E. 2006. Pseudomonas moraviensis sp. nov. and Pseudomonas vranovensis sp. nov., soil bacteria isolated on nitroaromatic compounds, and emended description of Pseudomonas asplenii. Int. J. Syst. Evol. Microbiol. 56: 2657–2663. DOI: 10.1099/ijs.0.63988-0

    Article  Google Scholar 

  • Valverde A., Vlázquez E., Gutiérrez C., Cervantes E., Ventosa A. & Igual J.M. 2003. Herbaspirillum lusitanum sp. nov., a novel nitrogen-fixing bacterium associated with root nodules of Phaseolus vulgaris. Int. J. Syst. Evol. Microbiol. 53: 1979–1983. DOI: 10.1099/ijs.0.02677-0

    Article  CAS  Google Scholar 

  • Weisburg W.G., Barns S.M., Pelletier D.A. & Lane D.J. 1991. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173: 697–703.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by a grant GACR P503/12/0337 of the Czech Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva Vlková.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vlková, E., Killer, J., Kmeť, V. et al. Identification of microbiota associated with Pectinatella magnifica in South Bohemia. Biologia 70, 365–371 (2015). https://doi.org/10.1515/biolog-2015-0040

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/biolog-2015-0040

Key words

Navigation