Skip to main content
Log in

Preliminary investigation of fungal bioprocessing of wheat straw for production of straw-thermoplastic composites

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Straw utilization for composites is limited by poor resin and polymer penetration, and excessive resin consumption owing to the straw cuticle, fines, and lignin-hemicellulose matrix. White-rot fungi degrade these components of straw and could, therefore, potentially be used to improve resin penetration and resin binding without the use of physical or chemical pretreatments. Although long treatment times and large footprints the limit use of fungal treatments on a large scale, distributed fungal pretreatments could alleviate land requirements. In this article, we present progress toward the development of a passive fungal straw upgrading system utilizing whiterot fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wolcott, M. P. and Englund, K. (1999), in Proceedings of the 33rd International Particleboard/Composite Materials Symposium, Wolcott, M. P., Tichy, R. J., and Bender, D. A., eds., Washington State University, Pullman, WA, pp. 103–111.

    Google Scholar 

  2. Sanadi, A. R., Caulfield, D. F., and Jacobson, R. E. (1997), in Paper and Composites from Agro-Based Resources, Rowell, R. M., Young, R. A., and Rowell, J. K., eds., CRC, Boca Raton, FL, pp. 377–402.

    Google Scholar 

  3. Marsden, W. L. and Gray, P. P. (1986), Crit. Rev. Biotechnol. 3(3), 235–276.

    Article  CAS  Google Scholar 

  4. Converse, A. O., Kwarteng, I. K., Grethlein, H. E., and Ooshima, H. (1989), Appl. Biochem. Biotechnol. 20/21, 63–78.

    Google Scholar 

  5. Cowling, E. B. and Kirk, T. K. (1976), Biotechnol. Bioeng. Symp. 6, 95–123.

    PubMed  CAS  Google Scholar 

  6. Thompson, D. N., Chen, H.-C., and Grethlein, H.E. (1992), Bioresour. Technol. 39, 155–163.

    Article  CAS  Google Scholar 

  7. Fan, L. T., Lee, Y.-H., and Gharpuray, M. M. (1982), Adv. Biochem. Eng. 23, 157–187.

    CAS  Google Scholar 

  8. Knappert, D., Grethlein, H., and Converse, A. (1980), Biotechnol. Bioeng. 22, 1449–1463.

    Article  CAS  Google Scholar 

  9. Goldstein, I. S., Pereira, H., Pittman, J. L., Strause, B. A., and Scaringelli, F. P. (1983), Biotechnol. Bioeng. Symp. 13, 17–25.

    CAS  Google Scholar 

  10. Playne, M. J. (1984), Biotechnol. Bioeng. 26, 426–433.

    Article  CAS  Google Scholar 

  11. Weimer, P. J., Chou, Y.-C.T., Weston, W. M., and Chase, D. B. (1986), Biotechnol. Bioeng. Symp. 17, 5–18.

    CAS  Google Scholar 

  12. Avgerinos, G. C. and Wang, D. I. C. (1983), Biotechnol. Bioeng. 25, 67–83.

    Article  CAS  Google Scholar 

  13. Taylor, J. D. (1981), in Energy from Biomass, 1st E. C. Conference, Palz, W., Chartier, P., and Hall, D. O., eds., Applied Science, London, UK, pp. 330–336.

    Google Scholar 

  14. Hatakka, A. I. (1983), Eur. J. Microbiol. Biotechnol. 18, 350–357.

    Article  CAS  Google Scholar 

  15. Avella, M., Casale, L., Dell’erba, R., Focher, B., Martuscelli, E., and Marzetti, A. (1998), J. Appl. Polym. Sci. 68, 1077–1089.

    Article  CAS  Google Scholar 

  16. Hess, J. R., Thompson, D. N., Hoskinson, R. L., Shaw, P. G., and Grant, D. R., (2003), Physical Separation of Straw Stem Components to Reduce Silica, in Applied Biochemistry and Biotechnology, vol. 105–108, Humana Press, Totowa, NJ, pp. 43–52.

    Google Scholar 

  17. Boominathan, K. and Reddy, C. A. (1992), in Handbook of Applied Mycology, vol. 4, Arora, D. K., Elander, R. P., and Mukerji, K. G., eds., Marcel-Dekker, New York, NY, pp. 763–822.

    Google Scholar 

  18. Blanchette, R. A., Abad, A. R., Farrell, R. L., and Leathers, T. D. (1989), Appl. Environ. Microbiol. 55, 1457–1465.

    PubMed  CAS  Google Scholar 

  19. Valmaseda, M., Almendros, G., and Martinez, A. T. (1990), Appl. Microbiol. Biotechnol. 33, 481–484.

    Article  CAS  Google Scholar 

  20. Moyson, E. and Verachtert, H. (1991), Appl. Microbiol. Biotechnol. 36, 421–424.

    Article  CAS  Google Scholar 

  21. Gamble, G. R., Akin, D. E., Makkar, H. P. S., and Becker, K. (1996), Appl. Environ. Microbiol. 62, 3600–3604.

    PubMed  CAS  Google Scholar 

  22. Hadar, Y., Kerem, Z., and Gorodecki, B. (1993), J. Biotechnol. 30, 133–139.

    Article  CAS  Google Scholar 

  23. Lindfelser, L. A., Detroy, R. W., Ramstack, J. M., and Worden, K. A. (1979), Dev. Ind. Microbiol. 20, 541–551.

    Google Scholar 

  24. Kirk, T. K. and Farrell, R. L. (1987), Annu. Rev. Microbiol. 41, 465–505.

    Article  PubMed  CAS  Google Scholar 

  25. American Public Health Association. (1989), in Standard Methods for the Examination of Water and Wastewater, 17th ed., Clesceri, L. S., Greenberg, A. E., Trussell, R. R., and Franson, M. A. H., eds., American Public Health Association, Washington, DC, pp. 4-144–4-147.

    Google Scholar 

  26. Cherry, R. S. and Thompson, D. N. (1997), Biotechnol. Bioeng. 56(3), 330–339.

    Article  CAS  Google Scholar 

  27. Kastner, J. R., Thompson, D. N., and Cherry, R. S. (1999), Enzyme. Microb. Technol. 24(1/2), 104–110.

    Article  CAS  Google Scholar 

  28. Stahl, J. D. and Aust, S. D. (1998), Rev. Toxicol. 2, 189–194.

    CAS  Google Scholar 

  29. Saeman, J. F., Bubl, J. L., and Harris, E. E. (1945), Ind. Eng. Chem. 17(1), 35–37.

    Article  CAS  Google Scholar 

  30. Martinez, A. T., Camarero, S., Guillén, F., Gutiérrez, A., Muñoz, C., Varela, E., Martinéz, M. J., Barrasa, J. M., Ruel, K., and Pelayo, J. M. (1994), FEMS Microbiol. Rev. 13, 265–274.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David N. Thompson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thompson, D.N., Houghton, T.P., Lacey, J.A. et al. Preliminary investigation of fungal bioprocessing of wheat straw for production of straw-thermoplastic composites. Appl Biochem Biotechnol 106, 423–436 (2003). https://doi.org/10.1385/ABAB:106:1-3:423

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:106:1-3:423

Index Entries

Navigation