Skip to main content
Log in

Bioprocess-Technological Potential of Irradiation-Based Fungal Pretreatment Platform Relevant to Lignocellulolytic Biocascade

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Lignocellulose-decaying fungal bioplatforms available are not commercially accessible and are limited to short-term use. In this study, those limitations were overcome by developing a platform using water-soaked rice straw (RS) biodegraded by irradiation-based fungal pretreatment (IBFP). This eco-friendly system increased the ability of RS to biodegrade and ferment without the generation of inhibitory compounds. When processed RS (i.e., with a water-soaking ratio of 81 % and irradiation dose of 80 kGy at 1 MeV and 0.12 mA) was pretreated with Dichomitus squalens for 9 days, the sugar yield was 58.5 % of the theoretical maximum. This sugar yield was comparable to that obtained with unirradiated RS for 15 days, which was 57.9 %. Furthermore, the ethanol concentration of 9.7 g L−1 provided a yield of 58.1 %; the theoretical maximum and productivity at 0.40 g L−1 h−1 were determined after simultaneous saccharification and fermentation for 24 h. In addition, microscopic images revealed that IBFP induced predominant ultrastructural modifications to the surface of cell wall fibers. The peroxidative profiles for different biosystems were analyzed in order to understand substrate-specific biocascades based on the differences in biomass components. The activation level of core lignocellulolysis-related factors was analogous under the optimized conditions of each system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sanderson, K. (2011). Lignocellulose: a chewy problem. Nature, 474, S12–S14.

    Article  CAS  Google Scholar 

  2. Jönsson, L. J., Alriksson, B., & Nilvebrant, N. O. (2013). Bioconversion of lignocellulose: inhibitors and detoxification. Biotechnology for Biofuels, 6, 16.

    Article  Google Scholar 

  3. Saritha, M., Arora, A., & Lata. (2012). Biological pretreatment of lignocellulosic substrates for enhanced delignification and enzymatic digestibility. Indian Journal of Microbiology, 52, 122–130.

    Article  CAS  Google Scholar 

  4. Wan, C., & Li, Y. (2012). Fungal pretreatment of lignocellulosic biomass. Biotechnology Advances, 30, 1447–1457.

    Article  CAS  Google Scholar 

  5. Bak, J. S., Kim, M. D., Choi, I. G., & Kim, K. H. (2010). Biological pretreatment of rice straw by fermenting with Dichomitus squalens. New Biotechnology, 27, 424–434.

    Article  CAS  Google Scholar 

  6. Bak, J. S., Ko, J. K., Choi, I. G., Park, Y. C., Seo, J. H., & Kim, K. H. (2009). Fungal pretreatment of lignocellulose by Phanerochaete chrysosporium to produce ethanol from rice straw. Biotechnology and Bioengineering, 104, 471–482.

    Article  CAS  Google Scholar 

  7. Bak, J. S. (2014). Electron beam irradiation enhances the digestibility and fermentation yield of water-soaked lignocellulosic biomass. Biotechnology Reports, 4, 30–33.

    Article  Google Scholar 

  8. Bak, J. S., Ko, J. K., Han, Y. H., Lee, B. C., Choi, I. G., & Kim, K. H. (2009). Improved enzymatic hydrolysis yield of rice straw using electron beam irradiation pretreatment. Bioresource Technology, 100, 1285–1290.

    Article  CAS  Google Scholar 

  9. Perie, F., & Gold, M. (1991). Manganese regulation of manganese peroxidase expression and lignin degradation by the white rot fungus Dichomitus squalens. Applied and Environmental Microbiology, 57, 2240–2245.

    CAS  Google Scholar 

  10. Teunissen, P. J. M., & Field, J. A. (1998). 2-Chloro-1,4-dimethoxybenzene as a novel catalytic cofactor for oxidation of anisyl alcohol by lignin peroxidase. Applied and Environmental Microbiology, 64, 830–835.

    CAS  Google Scholar 

  11. Bourbonnais, R., & Paice, M. G. (1988). Veratryl alcohol oxidases from the lignin-degrading basidiomycete Pleurotus sajor-caju. Biochemical Journal, 255, 445–450.

    Article  CAS  Google Scholar 

  12. Muheim, A., Waldner, R., Leisola, M. S. A., & Fiechter, A. (1990). An extracellular aryl-alcohol oxidase from the white-rot fungus Bjerkendera adusta. Enzyme and Microbial Technology, 12, 204–209.

    Article  CAS  Google Scholar 

  13. Kersten, P. J., & Kirk, T. K. (1987). Involvement of a new enzyme, glyoxal oxidase, in extracellular H2O2 production by Phanerochaete chrysosporium. Journal of Bacteriology, 169, 2195–2201.

    CAS  Google Scholar 

  14. Orth, A. B., Denny, M., & Tien, M. (1991). Overproduction of lignin-degrading enzymes by an isolate of Phanerochaete chrysosporium. Applied and Environmental Microbiology, 57, 2591–2596.

    CAS  Google Scholar 

  15. Bao, W., Lymar, E., & Renganathan, V. (1994). Optimization of cellobiose dehydrogenase and β-glucosidase production by cellulose-degrading cultures of Phanerochaete chrysosporium. Applied Microbiology and Biotechnology, 42, 642–646.

    Article  CAS  Google Scholar 

  16. Bak, J. S. (2014). Complementary substrate-selectivity of metabolic adaptive convergence in the lignocellulolytic performance by Dichomitus squalens. Microbial Biotechnology, 7, 434–445.

    Article  CAS  Google Scholar 

  17. Bak, J. S. (2015). Lignocellulose depolymerization occurs via an environmentally adapted metabolic cascades in the wood-rotting basidiomycete Phanerochaete chrysosporium. Microbiologyopen, 4, 151–166.

    Article  CAS  Google Scholar 

  18. Znameroski, E. A., Coradetti, S. T., Roche, C. M., Tsai, J. C., Iavarone, A. T., Cate, J. H., & Glass, N. L. (2012). Induction of lignocellulose-degrading enzymes in Neurospora crassa by cellodextrins. Proceedings of the National Academy of Sciences, 109, 6012–6017.

    Article  CAS  Google Scholar 

  19. Merino, S., & Cherry, J. (2007). Progress and challenges in enzyme development for biomass utilization. Advances in Biochemical Engineering/Biotechnology, 108, 95–120.

    Article  CAS  Google Scholar 

  20. Kim, T. H., Taylor, F., & Hicks, K. B. (2008). Bioethanol production from barley hull using SAA (soaking in aqueous ammonia) pretreatment. Bioresource Technology, 99, 5694–5702.

    Article  CAS  Google Scholar 

  21. Noureddini, H., & Byun, J. (2010). Dilute-acid pretreatment of distillers’ grains and corn fiber. Bioresource Technology, 101, 1060–1067.

    Article  CAS  Google Scholar 

  22. Sharma, R., Palled, V., Sharma-Shivappa, R. R., & Osborne, J. (2012). Potential of potassium hydroxide pretreatment of switchgrass for fermentable sugar production. Applied Biochemistry and Biotechnology, 169, 761–772.

    Article  Google Scholar 

  23. Zhao, Y., Wang, Y., Zhu, J. Y., Ragauskas, A., & Deng, Y. (2008). Enhanced enzymatic hydrolysis of spruce by alkaline pretreatment at low temperature. Biotechnology and Bioengineering, 99, 1320–1328.

    Article  CAS  Google Scholar 

  24. Kim, T. H., Lee, Y. Y., Sunwoo, C., & Kim, J. S. (2006). Pretreatment of corn stover by low-liquid ammonia recycle percolation process. Applied Biochemistry and Biotechnology, 133, 41–57.

    Article  CAS  Google Scholar 

  25. Shi, J., Sharma-Shivappa, R. R., Chinn, M., & Howell, N. (2009). Effect of microbial pretreatment on enzymatic hydrolysis and fermentation of cotton stalks for ethanol production. Biomass & Bioenergy, 33, 88–96.

    Article  CAS  Google Scholar 

  26. Shrestha, P., Rasmussen, M., Khanal, S. K., Pometto, A. L., 3rd, & van Leeuwen, J. H. (2008). Solid-substrate fermentation of corn fiber by Phanerochaete chrysosporium and subsequent fermentation of hydrolysate into ethanol. Journal of Agricultural and Food Chemistry, 56, 3918–3924.

    Article  CAS  Google Scholar 

  27. Dias, A. A., Freitas, G. S., Marque, G. S. M., Sampaio, A., Fraga, I. S., Rodrigue, M. A. M., Evtuguin, D. V., & Bezerra, R. M. F. (2010). Enzymatic saccharification of biologically pre-treated wheat straw with white-rot fungi. Bioresource Technology, 101, 6045–6050.

    Article  CAS  Google Scholar 

  28. Mesa, L., González, E., Cara, C., González, M., Castro, E., & Mussatto, S. I. (2011). The effect of organosolv pretreatment variables on enzymatic hydrolysis of sugarcane bagasse. Chemical Engineering Journal, 168, 1157–1162.

    Article  CAS  Google Scholar 

  29. Wan, C., & Li, Y. (2011). Effectiveness of microbial pretreatment by Ceriporiopsis subvermispora on different biomass feedstocks. Bioresource Technology, 102, 7507–7512.

    Article  CAS  Google Scholar 

  30. Cullen, D., & Kersten, P. J. (2004). Enzymology and molecular biology of lignin degradtion. In R. Brambl & G. A. Marzluf (Eds.), The mycota III: biochemistry and molecular biology. Berlin: Springer-Verlag.

    Google Scholar 

  31. Fernandez-Fueyo, E., Ruiz-Dueñas, F. J., Ferreira, P., Ferreira, P., Floudas, D., Hibbett, D. S., Canessa, P., Larrondo, L. F., James, T. Y., Seelenfreund, D., Lobos, S., Polanco, R., Tello, M., Honda, Y., Watanabe, T., Watanabe, T., Ryu, J. S., Kubicek, C. P., Schmoll, M., Gaskell, J., Hammel, K. E., St John, F. J., Vanden Wymelenberg, A., Sabat, G., Splinter BonDurant, S., Syed, K., Yadav, J. S., Doddapaneni, H., Subramanian, V., Lavín, J. L., Oguiza, J. A., Perez, G., Pisabarro, A. G., Ramirez, L., Santoyo, F., Master, E., Coutinho, P. M., Henrissat, B., Lombard, V., Magnuson, J. K., Kües, U., Hori, C., Igarashi, K., Samejima, M., Held, B. W., Barry, K. W., LaButti, K. M., Lapidus, A., Lindquist, E. A., Lucas, S. M., Riley, R., Salamov, A. A., Hoffmeister, D., Schwenk, D., Hadar, Y., Yarden, O., de Vries, R. P., Wiebenga, A., Stenlid, J., Eastwood, D., Grigoriev, I. V., Berka, R. M., Blanchette, R. A., Kersten, P., Martinez, A. T., Vicuna, R., & Cullen, D. (2012). Comparative genomics of Ceriporiopsis subvermispora and Phanerochaete chrysosporium provide insight into selective ligninolysis. Proceedings of the National Academy of Sciences, 109, 5458–5463.

    Article  CAS  Google Scholar 

  32. Vanden Wymelenberg, A., Gaskell, J., Mozuch, M., Sabat, G., Ralph, J., Skyba, O., Mansfield, S. D., Blanchette, R. A., Martinez, D., Grigoriev, I., Kersten, P. J., & Cullen, D. (2010). Comparative transcriptome and secretome analysis of wood decay fungi Postia placenta and Phanerochaete chrysosporium. Applied and Environmental Microbiology, 76, 3599–3610.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Education, Science and Technology, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Seop Bak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bak, J.S. Bioprocess-Technological Potential of Irradiation-Based Fungal Pretreatment Platform Relevant to Lignocellulolytic Biocascade. Appl Biochem Biotechnol 177, 1654–1664 (2015). https://doi.org/10.1007/s12010-015-1843-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1843-4

Keywords

Navigation