Skip to main content

Scan Techniques for Cardiac and Coronary Artery Imaging With Multislice CT

  • Chapter
CT of the Heart

Abstract

Cardiac imaging is a demanding application for any noninvasive imaging modality. On the one hand, high temporal resolution is needed to virtually freeze cardiac motion and thus avoid motion artifacts in the images. On the other hand, sufficient spatial resolution—at best submillimeter—is required to adequately visualize small and complex anatomical structures like the coronary arteries. The complete heart volume has to be examined within a single short breath-hold time to avoid breathing artifacts and to limit the amount of contrast agent, if necessary. The motion of the heart is both complex and very fast. Some estimates of the temporal resolution needed to freeze cardiac motion in any phase of the cardiac cycle are as low as 10 ms. In 1984, electron beam computed tomography (EBCT) was introduced as a noninvasive imaging modality for the diagnosis of coronary artery disease (14). Its temporal resolution of 100 ms allows for relatively motion-free imaging of the cardiac anatomy in the diastolic phase, even at higher heart rates. Because the EBCT at that time was limited to axial scanning for electrocardiogram (ECG)-synchronized cardiac investigations, a single breath-hold scan of the heart required slice widths of at least 3 mm. The resulting axial resolution was therefore limited and not adequate for 3D visualization of the coronary arteries. With the advent of subsecond rotation, combined with prospective and retrospective ECG-gating, mechanical single-slice helical or spiral CT systems with superior general image quality entered the realm of cardiac imaging (4,5). Since 1999, 4-slice CT systems, which have the potential to overcome some of the limitations of single-slice cardiac CT scanning, have been used to establish ECG-triggered or ECGgated multislice CT (MSCT) examinations of the heart and the coronary arteries in clinical use (610). As a result of the increased scan speed with four simultaneously acquired slices, coverage of the entire heart volume with thin slices within one breath-hold became feasible. The improved axial resolution provided much more accurate CT imaging of the heart and the coronary arteries (1114). Recent clinical studies have demonstrated the potential of MSCT to differentiate and classify lipid, fibrous, and calcified coronary plaques (15). Despite these promising advances, the 4-slice CT scanner technology still faces some challenges and limitations with respect to motion artifacts in patients with higher heart rates, limited spatial resolution, and long breath-hold times (12). In 2001, a new generation of MSCT systems with simultaneous acquisition of up to 16 slices was introduced (16,17). With submillimeter slice acquisition and gantry rotation times shorter than 0.5 s, both spatial and temporal resolution are improved, while examination times are considerably reduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boyd DP, Lipton MJ. Cardiac computed tomography. Proc IEEE 1982;71:298–307

    Article  Google Scholar 

  2. Agatston AS, Janowitz WR, Hildner FJ, Zusmer NR, Viamonte M, Detrano R. Quantification of coronary artery calcium using ultrafast computed tomography. JACC 1990;15:827–832.

    PubMed  CAS  Google Scholar 

  3. Achenbach S, Moshage W, Ropers D, Nössen J, Daniel WG. Value of electron-beam computed tomography for the non-invasive detection of high-grade coronary artery stenoses and occlusions. N Engl J Med 1998;339:1964–1971.

    Article  PubMed  CAS  Google Scholar 

  4. Becker CR, Jakobs TF, Aydemir S, et al. Helical and single-slice conventional CT versus electron beam CT for the quantification of coronary artery calcification. AJR 2000;174:543–547.

    PubMed  CAS  Google Scholar 

  5. Bahner ML, Böse J, Lutz A, Wallschläger H, Regn J, van Kaick G. Retrospectively ECG-gated spiral CT of the heart and lung. Eur Radiol 1999;9:106–109.

    Google Scholar 

  6. Ohnesorge B, Flohr T, Schaller S, et al. Technische Grundlagen und Anwendungen der Mehrschicht CT. Radiologe 1999;39:923–931.

    Article  PubMed  CAS  Google Scholar 

  7. Taguchi K, Aradate H. Algorithm for image reconstruction in multislice helical CT. Med Phys 1998;25(4):550–561.

    Article  PubMed  CAS  Google Scholar 

  8. Ohnesorge B, Flohr T, Becker CR, et al. Cardiac imaging by means of electrocardiographically gated multisection spiral CT: initial experience. Radiology 2000;217:564–571.

    PubMed  CAS  Google Scholar 

  9. Kachelriess M, Ulzheimer S, Kalender WA. ECG-correlated image reconstruction from subsecond multi-row spiral CT scans of the heart. Med Phys 2000;27:1881–1902.

    Article  PubMed  CAS  Google Scholar 

  10. Ohnesorge B, Becker CR, Flohr T, Reiser MF. Multi-Slice CT in Cardiac Imaging—Technical Principles, Clinical Application and Future Developments. Springer, New York: 2002.

    Google Scholar 

  11. Knez A, Becker CR, Leber A, Ohnesorge B, Reiser MF, Haberl R. Non-invasive assessment of coronary artery stenoses with multidetector helical computed tomography. Circulation 2000;101: e221–e222.

    PubMed  CAS  Google Scholar 

  12. Niemann K, Oudkerk M, Rensing BJ, et al. Coronary angiography with multi-slice computed tomography. Lancet 2001;357:599–603.

    Article  Google Scholar 

  13. Knez A, Becker CR, Leber A, et al. Usefulness of multislice spiral computed tomography angiography for determination of coronary artery stenoses. Am J Cardiol 2002;88:1191–1194.

    Article  Google Scholar 

  14. Kopp AF, Schröder S, Küttner A, et al. High resolution multi-slice computed tomography with retrospective gating for angiography in coronary arteries: results in 102 patients. Eur Heart J 2002;23: 1714–1725.

    PubMed  CAS  Google Scholar 

  15. Schröder S, Kopp AF, Baumbach A, et al. Non-invasive detection and evaluation of atherosclerotic plaque with multi-slice computed tomography. JACC 2001;37:1430–1435.

    Google Scholar 

  16. Flohr T, Stierstorfer K, Bruder H, Simon J, Schaller S. New technical developments in multislice CT, part 1: approaching isotropic resolution with sub-mm 16-slice scanning. Fortschr Röntgenstr 2002;174:839–845.

    Article  CAS  Google Scholar 

  17. Flohr T, Stierstorfer K, Bruder H, Simon J, Schaller S, Ohnesorge B. New technical developments in multislice CT, part 2: sub-millimeter 16-slice scanning and increased gantry rotation speed for cardiac imaging. RöFo, Fortschr Röntgenstr 2002;174:1022–1027.

    Article  CAS  Google Scholar 

  18. Funabashi N, Komiyama N, Yanagawa N, et al. Coronary artery patency after metallic stent implantation evaluated by multislice computed tomography. Circulation 2003;107:147–148.

    Article  PubMed  Google Scholar 

  19. Kopp AF, Küttner A, Heuschmid M, Schröder S, Ohnesorge B, Claussen CD. Multidetector-row CT cardiac imaging with 4 and 16 slices for coronary CTA and imaging of atherosclerotic plaques. Eu Radiol 2002; 12(Suppl 2): S17–S24.

    Article  Google Scholar 

  20. Flohr TG, Küttner A, Bruder H, et al. Performance evaluation of a multi-slice CT system with 16-slice detector and increased gantry rotation speed for isotropic submillimeter imaging of the heart. Herz 2003;28:7–19.

    Article  PubMed  Google Scholar 

  21. Flohr TG, Schoepf UJ, Küttner A, et al. Advances in cardiac imaging with 16-slice CT-systems. Acad Radiol 2003;10:386–401.

    Article  PubMed  Google Scholar 

  22. Flohr T, Ohnesorge B. Heart-rate adaptive optimization of spatial and temporal resolution for ECG-gated multi-slice spiral CT of the heart. J Comp Assist T 2001;25:907–923.

    Article  CAS  Google Scholar 

  23. Flohr T, Stierstorfer K, Bruder H, et al. New technical developments in multislice CT—part 1: approaching isotropic resolution with submillimeter 16-slice scanning. Fortschr Röntgenstr (RöFo) 2002; 174:1022–1027.

    Article  CAS  Google Scholar 

  24. Flohr T, Ohnesorge B, Bruder H, et al. Image reconstruction and performance evaluation for ECG-gated spiral scanning with a 16-slice system. Med Phys 2003;30(10):2650–2662.

    Article  PubMed  Google Scholar 

  25. Bruder H, Flohr TG, Stierstorfer K, Rauscher A, Hölzel A, Schaller S. ECG-gated dynamic cardiac volume imaging with CT area detectors (abstract). Radiology 2002;225(P):310.

    Google Scholar 

  26. Hong C, Becker CR, Huber A, et al. ECG-gated reconstructed multidetector row CT coronary angiography: effect of varying trigger delay on image quality. Radiology 2001;220:712–717.

    Article  PubMed  CAS  Google Scholar 

  27. Kopp AF, Schröder S, Küttner A, et al. Coronary arteries: retrospectively ECG-gated multi-detector row CT angiography with selective optimization of the reconstruction window. Radiology 2001;221: 683–688.

    Article  PubMed  CAS  Google Scholar 

  28. Jakobs T, Becker CR, Ohnesorge B, Flohr T, Schoepf UJ, Reiser MF. Reduction of radiation exposure with ECG-controlled tube current modulation for retrospectively ECG-gated helical scans of the heart. Eur Radiol 2002; 12:1081–1086.

    Article  PubMed  Google Scholar 

  29. Flohr T, Prokop M, Schöpf, et al. A new ECG-gated multislice spiral CT scan and reconstruction technique with extended volume coverage for cardio-thoracic applications. Eur Radiol 2002;12: 1527–1532.

    Google Scholar 

  30. Flohr T, Bruder H, Küttner A, Heuschmid M, Schaller S, Ohnesorge BM. ECG-gated spiral scanning of the lung and mediastinal vessels with optimized temporal resolution and cone-correction on a 16-slice CT system: performance evaluation and initial clinical results (abstract). Radiology 2002;225(P):449.

    Google Scholar 

  31. Kopp AF, Ohnesorge B, Becker C, et al. Reproducibility and accuracy of coronary calcium measurement with multidetector-row versus electron beam CT. Radiology 2002;225:113–119.

    Article  PubMed  CAS  Google Scholar 

  32. Ulzheimer S, Halliburton SS, McCollough CH, Becker CR, White RD, Kalender WA. Evaluation of image quality and calcium scoring performance in multislice cardiac computed tomography (abstract). Radiology 2002;221(P):458.

    Google Scholar 

  33. Hunold P, Vogt FM, Schmermund A, Kerkhoff G, Debatin JF, Barkhausen J. Radiation exposure during noninvasive coronary artery imaging: comparison of multislice CT and electron beam CT. Radiology 2002;221(P):503–504.

    Google Scholar 

  34. Schoepf UJ, Becker CR, Ohnesorge BM, Yucel EK (2003). CT of coronary artery disease. Radiology, in press.

    Google Scholar 

  35. Kalender WA, Schmidt B, Zankl M, Schmidt M. A PC program for estimating organ dose and effective dose values in computed tomography. Eur Radiol 1999;9:555–562.

    Article  PubMed  CAS  Google Scholar 

  36. Schmidt B, Ulzheimer S, Kalender WA. Dose in multi-slice cardiac CT: assessment of organ effective dose values with Monte Carlo methods (abstract). Radiology 2001;221(P):414.

    Google Scholar 

  37. Hong C, Becker CR, Schoepf UJ, Ohnesorge B, Brüning R, Reiser MF. Absolute quantification of coronary calcification in non-contrast and contrast-enhanced multislice CT studies. Radiology 2002;223:474–480.

    Article  PubMed  Google Scholar 

  38. Fleischmann D, Rubin GD, Bankier AA, Hittmair K. Improved uniformity of aortic enhancement with customized contrast medium injection protocols at CT angiography. Radiology 2000;214:363–371.

    PubMed  CAS  Google Scholar 

  39. Schweiger GD, Chang PJ, Brown BP. Optimizing contrast enhancement during helical CT of the liver: a comparison of two bolus tracking techniques. Am J Roentgenol 1998;171:1551–1558.

    CAS  Google Scholar 

  40. Becker CR, Kleffel T, Crispin A, et al. Coronary artery calcium measurement: agreement of multirow detector and electron beam CT. Am J Roentgenol 2001;176:1295–1298.

    CAS  Google Scholar 

  41. Achenbach S, Ropers D, Mohlenkamp S, et al. Variability of repeated coronary artery calcium measurements by electron beam tomography. Am J Cardiol 2001;87:210–213.

    Article  PubMed  CAS  Google Scholar 

  42. Achenbach S, Ropers D, Pohle K, et al. Influence of lipid-lowering therapy on the progression of coronary artery calcification—a prospective study. Circulation 2002;106:1077–1082.

    Article  PubMed  CAS  Google Scholar 

  43. Shemesh J, Apter S, Stroh CI, et al. Tracking coronary calcification by using dual-section spiral CT: a 3-year follow-up. Radiology 2000;217:461–465.

    PubMed  CAS  Google Scholar 

  44. Daniell A, Friedman J, Berman D, et al. Concordance of coronary calcium estimation between multi-detector and electron beam CT (abstract). Circulation 2002(Suppl. II);106(19):II–479.

    Google Scholar 

  45. Stanford W, Thompson B, Burns TL, Heery S, Burr M. Multi-detector helical CT versus electron beam CT in the quantification of coronary artery calcification: emphasis on lower calcium scores. Radiology 2004;230:397–402.

    Article  PubMed  Google Scholar 

  46. Ohnesorge B, Flohr T, Heuschmid M, Becker C. Evaluation of different examination protocols for coronary artery calcium quantification with ECG-gated 16-slice spiral CT (abstract). Radiology 2002;225(P):239.

    Google Scholar 

  47. Ohnesorge B, Kopp AF, Fischbach R, et al. Reproducibility of coronary calcium quantification in repeat examinations with retrospectively ECG-gated multislice spiral CT. Eur Radiol 2002;12:1532–1540.

    Article  PubMed  CAS  Google Scholar 

  48. Moser K, Bateman T, Case J, et al. The influence of acquisition mode on the reproducibility of coronary artery calcium scores using multi-detector computed tomography (abstract). Circulation 2002(Suppl. II);106(19): II–479.

    Google Scholar 

  49. Hong C, Bae KT, Pilgram TK, et al. Coronary artery calcium measurement with multi-detector row CT: in vitro assessment of effect of radiation dose. Radiology 2002;225:901–906.

    Article  PubMed  CAS  Google Scholar 

  50. Ulzheimer S, Kalender WA. Assessment of calcium scoring performance in cardiac computed tomography. Eur Radiol 2003;13:484–497.

    PubMed  Google Scholar 

  51. Becker CR, Schöpf UJ, Reiser MF. Coronary calcium scoring: medicine and politics. Eur Radiol 2003;13:445–447.

    Article  PubMed  Google Scholar 

  52. Nieman K, Cademartiri F, Lemos PA, et al. Reliable noninvasive coronary angiography with fast submillimeter multislice spiral computed tomography. Circulation 2002;106:2051–2054.

    Article  PubMed  Google Scholar 

  53. Ropers D, Baum U, Pohle K, et al. Detection of coronary artery stenoses with thin-slice multi-detector row spiral computed tomography and multiplanar reconstruction. Circulation 2003;107:664–666.

    Article  PubMed  Google Scholar 

  54. Juergens KU, Grude M, Fallenberg EM, Heindel W, Fischbach R. Using ECG-gated multidetector CT to evaluate global left ventricular myocardial function in patients with coronary artery disease. AJR Am J Roentgenol 2002;179:1545–1550.

    PubMed  Google Scholar 

  55. Achenbach S, Ropers D, Holle J, et al. In-plane coronary arterial motion velocity: measurement with electron beam CT. Radiology 2000;216:457–463.

    PubMed  CAS  Google Scholar 

  56. Wang Y, Watts R, Mitchell I, et al. Coronary MR angiography: selection of acquisition window of minimal cardiac motion with electrocardiography-triggered navigator cardiac motion prescanning—initial results. Radiology 2001;218:580–585.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press, Inc., Totowa, NJ

About this chapter

Cite this chapter

Ohnesorge, B.M., Westerman, B.R., Schoepf, U.J. (2005). Scan Techniques for Cardiac and Coronary Artery Imaging With Multislice CT. In: Schoepf, U.J. (eds) CT of the Heart. Contemporary Cardiology. Humana Press. https://doi.org/10.1385/1-59259-818-8:023

Download citation

  • DOI: https://doi.org/10.1385/1-59259-818-8:023

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-303-9

  • Online ISBN: 978-1-59259-818-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics