Skip to main content

Advertisement

Log in

Cationic Polylactic Acid-Based Nanoparticles Improve BSA-FITC Transport Across M Cells and Engulfment by Porcine Alveolar Macrophages

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

This work described the development of a cationic polylactic acid (PLA)-based nanoparticles (NPs) as an antigen delivery system using dimethyldioctadecylammonium bromide (DDA) to facilitate the engulfment of BSA-FITC by porcine alveolar macrophages (3D4/2 cells) and heat-labile enterotoxin subunit B (LTB) to enhance the transport of BSA-FITC across M cells. The experimental design methodology was employed to study the influence of PLA, polyvinyl alcohol (PVA), DDA, and LTB on the physical properties of the PLA-based NPs. The size of selected cationic PLA NPs comprising 5% PLA, 5% PVA, and 0.6% DDA with or without LTB absorption was range from 367 to 390 nm with a polydispersity index of 0.26, a zeta potential of + 26.00 to + 30.55 mV, and entrapment efficiency of 41.43%. Electron micrographs revealed NPs with spherical shape. The release kinetic of BSA from the NPs followed the Korsmeyer-Peppas kinetics. The cationic PLA NPs with LTB surface absorption showed 3-fold increase in BSA-FITC transported across M cells compared with the NPs without LTB absorption. The uptake studies demonstrated 2-fold increase in BSA-FITC intensity in 3D4/2 cells with cationic NPs as compared with anionic NPs. Overall, the results suggested that LTB decreased the retention time of BSA-FITC loaded in the cationic PLA NPs within the M cells, thus promoting the transport of BSA-FITC across the M cells, and cationic NPs composed of DDA help facilitate the uptake of BSA-FITC in the 3D4/2 cells. Further studies in pigs with respiratory antigens will provide information on the efficacy of cationic PLA NPs as a nasal antigen carrier system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Neutra MR, Kozlowski PA. Mucosal vaccines: the promise and the challenge. Nat Rev Immunol. 2006;6(2):148–58.

    Article  CAS  PubMed  Google Scholar 

  2. Woodrow KA, Bennett KM, Lo DD. Mucosal vaccine design and delivery. Annu Rev Biomed Eng. 2012;14:17–46.

    Article  CAS  PubMed  Google Scholar 

  3. Illum L. Nasal drug delivery-recent developments and future prospects. J Control Release. 2012;161(2):254–63.

    Article  CAS  PubMed  Google Scholar 

  4. Vajdy M, O’Hagan DT. Microparticles for intranasal immunization. Adv Drug Deliv Rev. 2001;51(1):127–41.

    Article  CAS  PubMed  Google Scholar 

  5. Wu HY, Nguyen HH, Russell MW. Nasal lymphoid tissue (NALT) as a mucosal immune inductive site. S Scand J of immunol. 1997;46(5):506–13.

    Article  CAS  Google Scholar 

  6. Zuercher AW, Coffin SE, Thurnheer MC, Fundova P, Cebra JJ. Nasal-associated lymphoid tissue is a mucosal inductive site for virus-specific humoral and cellular immune responses. J Immunol. 2002;168(4):1796–803.

    Article  CAS  PubMed  Google Scholar 

  7. Gullberg E, Leonard M, Karlsson J, Hopkins AM, Brayden D, Baird AW, et al. Expression of specific markers and particle transport in a new human intestinal M-cell model. Biochem Biophys Res Commun. 2000;279(3):808–13.

    Article  CAS  PubMed  Google Scholar 

  8. Jani P, Halbert GW, Langride J, Florence AT. The uptake and translocation of latex nanospheres and microspheres after oral administration to rats. J Pharm Pharmacol. 1989;41:809–12.

    Article  CAS  PubMed  Google Scholar 

  9. Mabbott NA, Donaldson DS, Ohno H, Williams IR, Mahajan A. Microfold (M) cells: important immunosurveillance posts in the intestinal epithelium. Mucosal Immunol. 2013;6(4):666–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Irvine DJ, Hanson MC, Rakhra K, Tokatlian T. Synthetic nanoparticles for vaccines and immunotherapy. Chem Rev. 2015;115(19):11109–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pati R, Shevtsov M, Sonawane A. Nanoparticle vaccines against infectious diseases. Front Immunol. 2018;9.

  12. McGhee JR, Mestecky J, Dertzbaugh MT, Eldridge JH, Hirasawa M, Kiyono H. The mucosal immune system: from fundamental concepts to vaccine development. Vaccine. 1992;10(2):75–88.

    Article  CAS  PubMed  Google Scholar 

  13. Mahapatro A, Singh DK. Biodegradable nanoparticles are excellent vehicle for site directed in-vivo delivery of drugs and vaccines. J Nanobiotechnology. 2011;9:55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gregory AE, Titball R, Williamson D. Vaccine delivery using nanoparticles. Front Cell Infect Microbiol. 2013;3:13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Vila A, sánchez A, Évora C, Soriana I, Vila Jato JL, Alonso ML. PEG-PLA nanoparticles as carriers for nasal vaccine delivery. J Aerosol Med 2004;17:174–185.

    Article  CAS  PubMed  Google Scholar 

  16. Davis SS. Nasal vaccines. Adv Drug Deliv Rev. 2001;51(1–3):21–42.

    Article  CAS  PubMed  Google Scholar 

  17. Partidos CD. Intranasal vaccines: forthcoming challenges. Pharmaceut Sci Tech Today. 2000;3(8):273–81.

    Article  CAS  Google Scholar 

  18. Slutter B, Bal S, Keijzer C, Mallants R, Hagenaars N, Que I, et al. Nasal vaccination with N-trimethyl chitosan and PLGA based nanoparticles: nanoparticle characteristics determine quality and strength of the antibody response in mice against the encapsulated antigen. Vaccine. 2010;28(38):6282–91.

    Article  PubMed  CAS  Google Scholar 

  19. Hofland HE, Shephard L, Sullivan SM. Formation of stable cationic lipid/DNA complexes for gene transfer. Proc Natl Acad Sci U S A. 1996;93(14):7305–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Qu W, Li N, Yu R, Zuo W, Fu T, Fei W, et al. Cationic DDA/TDB liposome as a mucosal vaccine adjuvant for uptake by dendritic cells in vitro induces potent humoural immunity. Artif Cells Nanomed Biotechnol. 2018;46(sup1):852–60.

    Article  CAS  PubMed  Google Scholar 

  21. Khademi F, Derakhshan M, Yousefi-Avarvand A, Najafi A, Tafaghodi M. A novel antigen of Mycobacterium tuberculosis and MPLA adjuvant co-entrapped into PLGA:DDA hybrid nanoparticles stimulates mucosal and systemic immunity. Microb Pathog. 2018;125:507–13.

    Article  CAS  PubMed  Google Scholar 

  22. Christensen D, Foged C, Rosenkrands I, Nielsen HM, Andersen P, Agger EM. Trehalose preserves DDA/TDB liposomes and their adjuvant effect during freeze-drying. Biochim Biophys Acta. 2007;1768(9):2120–9.

    Article  CAS  PubMed  Google Scholar 

  23. Katz D, Lehrer S, Galan O, Lachmi B, Cohen S, Inbar I, et al. Unique Immunomodulating properties of dimethyl dioctadecyl ammonium bromide (DDA) in experimental viral vaccines. In: Cohen S, Shafferman A, editors. Novel strategies in the design and production of vaccines. Boston, MA: Springer US; 1996. p. 115–25.

    Chapter  Google Scholar 

  24. Kirby DJ, Rosenkrands I, Agger EM, Andersen P, Coombes AG, Perrie Y. PLGA microspheres for the delivery of a novel subunit TB vaccine. J Drug Target. 2008;16(4):282–93.

    Article  CAS  PubMed  Google Scholar 

  25. Korsholm KS, Agger EM, Foged C, Christensen D, Dietrich J, Andersen CS, et al. The adjuvant mechanism of cationic dimethyldioctadecylammonium liposomes. Immunology. 2007;121(2):216–26.

    Article  CAS  PubMed  Google Scholar 

  26. Bannunah AM, Vllasaliu D, Lord J, Stolnik S. Mechanisms of nanoparticle internalization and transport across an intestinal epithelial cell model: effect of size and surface charge. Mol Pharm. 2014;11(12):4363–73.

    Article  CAS  PubMed  Google Scholar 

  27. Dillon A, Lo DD. M cells: intelligent engineering of mucosal immune surveillance. Front Immunol. 2019;10:1499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jaganathan K, Vyas S. Strong systemic and mucosal immune responses to surface-modified PLGA microspheres containing recombinant hepatitis B antigen administered intranasally. Vaccine. 2006;24(19):4201–11.

    Article  CAS  PubMed  Google Scholar 

  29. Paulus GL, Xavier RJ. Autophagy and checkpoints for intracellular pathogen defense. Curr Opin Gastroenterol. 2015;31(1):14–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sipos A, Kim K-J, Chow RH, Flodby P, Borok Z, Crandall ED. Alveolar epithelial cell processing of nanoparticles activates autophagy and lysosomal exocytosis. Am J Phys Lung Cell Mol Phys. 2018;315(2):L286–300.

    CAS  Google Scholar 

  31. Schulz O, Pabst O. Antigen sampling in the small intestine. Trends Immunol. 2013;34(4):155–61.

    Article  CAS  PubMed  Google Scholar 

  32. Pridgen EM, Alexis F, Farokhzad OC. Polymeric nanoparticle drug delivery technologies for oral delivery applications. Expert Opin Drug Deliv. 2015;12(9):1459–73.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Cervin J, Wands AM, Casselbrant A, Wu H, Krishnamurthy S, Cvjetkovic A, et al. GM1 ganglioside-independent intoxication by cholera toxin. PLoS Pathog. 2018;14(2):e1006862.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Frey A, Giannasca KT, Weltzin R, Giannasca PJ, Reggio H, Lencer WI, et al. Role of the glycocalyx in regulating access of microparticles to apical plasma membranes of intestinal epithelial cells: implications for microbial attachment and oral vaccine targeting. J Exp Med. 1996;184(3):1045–59.

    Article  CAS  PubMed  Google Scholar 

  35. World Health Organization (WHO), guideline on stability evaluation of vaccines, (2006).

  36. USP32-NF27. <71> Sterility Tests. Rockville, Md: United States Pharmacopeial Convention, Inc; 2009.

  37. Chaikhumwang P, Nilubol D, Tantituvanont A, Chanvorachote P. A new cell-to-cell interaction model for epithelial microfold cell formation and the enhancing effect of epidermal growth factor. Eur J Pharm Sci. 2017;106:49–61.

    Article  CAS  PubMed  Google Scholar 

  38. Rose F, Wern JE, Ingvarsson PT, van de Weert M, Andersen P, Follmann F, et al. Engineering of a novel adjuvant based on lipid-polymer hybrid nanoparticles: a quality-by-design approach. J Control Release. 2015;210:48–57.

    Article  CAS  PubMed  Google Scholar 

  39. Yusuf H, Nugraheni R, Setyawan D. Effect of cellulose derivative matrix and oligosaccharide on the solid state and physical characteristics of dimethyldioctadecylammoniumliposomes for vaccine. Res Pharm Sci. 2019;14(1):11.

    Article  Google Scholar 

  40. Zhai W, Ko Y, Zhu W, Wong A, Park CB. A study of the crystallization, melting, and foaming behaviors of polylactic acid in compressed CO(2). Int J Mol Sci. 2009;10(12):5381–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Nikolic L, Ristic I, Adnadjevic B, Nikolic V, Jovanovic J, Stankovic M. Novel microwave-assisted synthesis of poly(D,L-lactide): the influence of monomer/initiator molar ratio on the product properties. Sensors (Basel). 2010;10(5):5063–73.

    Article  CAS  Google Scholar 

  42. Rachmawati H, Curcumin-Loaded PLA. Nanoparticles: formulation and physical evaluation. Sci Pharm. 2016;84(1):191–202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yang Y-Y, Chia H-H, Chung T-S. Effect of preparation temperature on the characteristics and release profiles of PLGA microspheres containing protein fabricated by double-emulsion solvent extraction/evaporation method. J Control Release. 2000;69(1):81–96.

    Article  CAS  PubMed  Google Scholar 

  44. Leo E, Forni F, Bernabei MT. Surface drug removal from ibuprofen-loaded PLA microspheres. Int J Pharm. 2000;196(1):1–9.

    Article  CAS  PubMed  Google Scholar 

  45. Kirby DJ, Kaur R, Agger EM, Andersen P, Bramwell VW, Perrie Y. Developing solid particulate vaccine adjuvants: surface bound antigen favours a humoural response, whereas entrapped antigen shows a tendency for cell mediated immunity. Curr Drug Deliv. 2013;10:268–78.

    Article  CAS  PubMed  Google Scholar 

  46. Costa P, Lobo JMS. Modeling and comparison of dissolution profiles. Eur J Pharm Sci. 2001;13:11.

    Article  Google Scholar 

  47. Niebergall PJ, Milosovich G, Goyan JE. Dissolution rate studies II. J Pharm Sci. 1963;52(3):236–41.

    Article  CAS  PubMed  Google Scholar 

  48. Talmage DW, Dixon FJ. The influence of adjuvants on the elimination of soluble protein antigens and the associated antibody responses. J Infect Dis. 1953;93(2):176–80.

    Article  CAS  PubMed  Google Scholar 

  49. Delputte PL, Vanderheijden N, Nauwynck HJ, Pensaert MB. Involvement of the matrix protein in attachment of porcine reproductive and respiratory syndrome virus to a heparinlike receptor on porcine alveolar macrophages. J Virol. 2002;76(9):4312–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Pang H-B, Braun GB, Ruoslahti E. Neuropilin-1 and heparan sulfate proteoglycans cooperate in cellular uptake of nanoparticles functionalized by cationic cell-penetrating peptides. Sci Adv. 2015;1(10):e1500821.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Rojanasakul Y, Wang LY, Bhat M, Glover DD, Malanga CJ, Ma JKH. The transport barrier of epithelia-a comparative study on membrane permeability and charge selectivity in the rabbit. Pharm Res. 1992;9(8):6.

    Article  Google Scholar 

Download references

Funding

This study was supported by Research and Researchers for Industries (RRI, grant number PHD58I0037), and Agricultural Research Development Agency (Public Organization) (ARDA, grant number CRP5705010990). Furthermore, the partial funding was supported by Chulalongkorn University Special Task Force for Activation Research (CU-STAR): swine virus evolution and vaccine research (SVEVR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angkana Tantituvanont.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaikhumwang, P., Kitsongsermthon, J., Manopakdee, K. et al. Cationic Polylactic Acid-Based Nanoparticles Improve BSA-FITC Transport Across M Cells and Engulfment by Porcine Alveolar Macrophages. AAPS PharmSciTech 21, 134 (2020). https://doi.org/10.1208/s12249-020-01689-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-020-01689-x

Key Words

Navigation