Skip to main content

Advertisement

Log in

The Effects of Pharmaceutical Excipients on Gastrointestinal Tract Metabolic Enzymes and Transporters—an Update

  • Review Article
  • Theme: Effects of Pharmaceutical Excipients on the Function of Transporters and Cytochrome P450 in Gastrointestinal Tract and Or
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Accumulating evidence from the last decade has shown that many pharmaceutical excipients are not pharmacologically inert but instead have effects on metabolic enzymes and/or drug transporters. Hence, the absorption, distribution, metabolism, and elimination (ADME) of active pharmaceutical ingredients (APIs) may be altered due to the modulation of their metabolism and transport by excipients. The impact of excipients is a potential concern for Biopharmaceutics Classification System (BCS)-based biowaivers, particularly as the BCS-based biowaivers have been extended to class 3 drugs in certain dosage forms. The presence of different excipients or varying amounts of excipients between formulations may result in bio-inequivalence. The excipient impact may lead to significant variations in clinical outcomes as well. The aim of this paper is to review the recent findings of excipient effects on gastrointestinal (GI) absorption, focusing on their interactions with the metabolic enzymes and transporters in the GI tract. A wide range of commonly used excipients such as binders, diluents, fillers, solvents, and surfactants are discussed here. We summarized the reported effects of those excipients on GI tract phase I and phase II enzymes, uptake and efflux transporters, and relevant clinical significance. This information can enhance our understanding of excipient influence on drug absorption and is useful in designing pharmacokinetic studies and evaluating the resultant data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gavhane YN, Yadav AV. Loss of orally administered drugs in GI tract. Saudi Pharm J SPJ: Off Publ Saudi Pharm Soc. 2012;20(4):331–44.

    Article  Google Scholar 

  2. Lipinski CA. Drug-like properties and the causes of poor solubility and poor permeability. J Pharmacol Toxicol Methods. 2000;44(1):235–49.

    Article  CAS  PubMed  Google Scholar 

  3. Bardelmeijer HA, van Tellingen O, Schellens JH, Beijnen JH. The oral route for the administration of cytotoxic drugs: strategies to increase the efficiency and consistency of drug delivery. Investig New Drugs. 2000;18(3):231–41.

    Article  CAS  Google Scholar 

  4. Katsura T, Inui K. Intestinal absorption of drugs mediated by drug transporters: mechanisms and regulation. Drug Metab Pharmacokinet. 2003;18(1):1–15.

    Article  CAS  PubMed  Google Scholar 

  5. Lee V, Yamamoto A. Penetration and enzymatic barriers to peptide and protein absorption. Adv Drug Deliv Rev. 1989;4(2).

  6. Crauste-Manciet S, Decroix M, Farinotti R, Chaumeil J. Cefpodoxime-proxetil hydrolysis and food effects in the intestinal lumen before absorption: in vitro comparison of rabbit and human material. Int J Pharm. 1997;157(2):153–61.

    Article  CAS  PubMed  Google Scholar 

  7. Canny GO, McCormick BA. Bacteria in the intestine, helpful residents or enemies from within? Infect Immun. 2008;76(8):3360–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ayman El-Kattan MV. Oral absorption, intestinal metabolism and human oral bioavailability. Paxton J, editor: InTech; 2012.

  9. Chaudhari SP, Patil PS. Pharmaceutical excipients: a review. Int J Adv Pharmacy Biol Chem. 2012;1(1):21–34.

    Google Scholar 

  10. Buggins TR, Dickinson PA, Taylor G. The effects of pharmaceutical excipients on drug disposition. Adv Drug Deliv Rev. 2007;59(15):1482–503.

    Article  CAS  PubMed  Google Scholar 

  11. Shilpa P, Chaudhari PSP. Pharmaceutical excipients: a review. Int J Adv Pharmacy Biol Chem. 2012;1(1):21–34.

    Google Scholar 

  12. Goole J, Lindley DJ, Roth W, Carl SM, Amighi K, Kauffmann JM, et al. The effects of excipients on transporter mediated absorption. Int J Pharm. 2010;393(1–2):17–31.

    Article  CAS  PubMed  Google Scholar 

  13. Paine MF, Hart HL, Ludington SS, Haining RL, Rettie AE, Zeldin DC. The human intestinal cytochrome P450 “pie”. Drug Metab Dispos Biol Fate Chem. 2006;34(5):880–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nebert DW, Russell DW. Clinical importance of the cytochromes P450. Lancet. 2002;360(9340):1155–62.

    Article  CAS  PubMed  Google Scholar 

  15. Lewis DF. 57 varieties: the human cytochromes P450. Pharmacogenomics. 2004;5(3):305–18.

    Article  CAS  PubMed  Google Scholar 

  16. Yan Z, Caldwell GW. Metabolism profiling, and cytochrome P450 inhibition & induction in drug discovery. Curr Top Med Chem. 2001;1(5):403–25.

    Article  CAS  PubMed  Google Scholar 

  17. Mawe GM, Gardette R, D’Agostaro L, Role LW. Development of synaptic transmission at autonomic synapses in vitro revealed by cytochrome oxidase histochemistry. J Neurobiol. 1990;21(4):578–91.

    Article  CAS  PubMed  Google Scholar 

  18. Labroo RB, Paine MF, Thummel KE, Kharasch ED. Fentanyl metabolism by human hepatic and intestinal cytochrome P450 3A4: implications for interindividual variability in disposition, efficacy, and drug interactions. Drug Metab Dispos Biol Fate Chem. 1997;25(9):1072–80.

    CAS  PubMed  Google Scholar 

  19. Lown KS, Ghosh M, Watkins PB. Sequences of intestinal and hepatic cytochrome P450 3A4 cDNAs are identical. Drug Metab Dispos Biol Fate Chem. 1998;26(2):185–7.

    CAS  PubMed  Google Scholar 

  20. Bravo Gonzalez RC, Huwyler J, Boess F, Walter I, Bittner B. In vitro investigation on the impact of the surface-active excipients Cremophor EL, Tween 80 and Solutol HS 15 on the metabolism of midazolam. Biopharm Drug Dispos. 2004;25(1):37–49.

    Article  PubMed  Google Scholar 

  21. Ren X, Mao X, Cao L, Xue K, Si L, Qiu J, et al. Nonionic surfactants are strong inhibitors of cytochrome P450 3A biotransformation activity in vitro and in vivo. Eur J Pharm Sci Off J Eur Fed Pharm Sci. 2009;36(4–5):401–11.

    CAS  Google Scholar 

  22. Christiansen A, Backensfeld T, Denner K, Weitschies W. Effects of non-ionic surfactants on cytochrome P450-mediated metabolism in vitro. Eur J Pharm Biopharm Off J Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik eV. 2011;78(1):166–72.

    CAS  Google Scholar 

  23. Ren X, Mao X, Si L, Cao L, Xiong H, Qiu J, et al. Pharmaceutical excipients inhibit cytochrome P450 activity in cell free systems and after systemic administration. Eur J Pharm Biopharm Off J Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik eV. 2008;70(1):279–88.

    CAS  Google Scholar 

  24. Huang J, Si L, Jiang L, Fan Z, Qiu J, Li G. Effect of pluronic F68 block copolymer on P-glycoprotein transport and CYP3A4 metabolism. Int J Pharm. 2008;356(1–2):351–3.

    Article  CAS  PubMed  Google Scholar 

  25. Zhu S, Huang R, Hong M, Jiang Y, Hu Z, Liu C, et al. Effects of polyoxyethylene (40) stearate on the activity of P-glycoprotein and cytochrome P450. Eur J Pharm Sci Off J Eur Fed Pharm Sci. 2009;37(5):573–80.

    CAS  Google Scholar 

  26. Martin P, Giardiello M, McDonald TO, Rannard SP, Owen A. Mediation of in vitro cytochrome p450 activity by common pharmaceutical excipients. Mol Pharm. 2013;10(7):2739–48.

    Article  CAS  PubMed  Google Scholar 

  27. Tompkins L, Lynch C, Haidar S, Polli J, Wang H. Effects of commonly used excipients on the expression of CYP3A4 in colon and liver cells. Pharm Res. 2010;27(8):1703–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wrighton SA, Ring BJ, Watkins PB, VandenBranden M. Identification of a polymorphically expressed member of the human cytochrome P-450III family. Mol Pharmacol. 1989;36(1):97–105.

    CAS  PubMed  Google Scholar 

  29. Soars MG, Grime K, Riley RJ. Comparative analysis of substrate and inhibitor interactions with CYP3A4 and CYP3A5. Xenobiotica; the fate of foreign compounds in biological systems. 2006;36(4):287–99.

  30. Wrighton SA, Brian WR, Sari MA, Iwasaki M, Guengerich FP, Raucy JL, et al. Studies on the expression and metabolic capabilities of human liver cytochrome P450IIIA5 (HLp3). Mol Pharmacol. 1990;38(2):207–13.

    CAS  PubMed  Google Scholar 

  31. Schuetz EG, Schuetz JD, Strom SC, Thompson MT, Fisher RA, Molowa DT, et al. Regulation of human liver cytochromes P-450 in family 3A in primary and continuous culture of human hepatocytes. Hepatology. 1993;18(5):1254–62.

    Article  CAS  PubMed  Google Scholar 

  32. Wolf KK, Paine MF, Watkins PB. Metabolic barrier of the gastrointestinal tract. Gastrointestinal Toxicology. 10. Second ed 2010. p 53–75.

  33. Wang HJ, Hsiong CH, Ho ST, Lin MJ, Shih TY, Huang PW, et al. Commonly used excipients modulate UDP-glucuronosyltransferase 2B7 activity to improve nalbuphine oral bioavailability in humans. Pharm Res. 2014;31(7):1676–88.

    Article  CAS  PubMed  Google Scholar 

  34. Ro J, Kim H, Shim BH, Kim I, Kim JT, Kim H, et al. In vitro metabolic modulation of aryl sulfotransferases by pharmaceutical excipients. B Korean Chem Soc. 2014;35(8):2577–80.

    Article  CAS  Google Scholar 

  35. Jancova P, Anzenbacher P, Anzenbacherova E. Phase Ii drug metabolizing enzymes. Biomed Pap. 2010;154(2):103–16.

    Article  CAS  Google Scholar 

  36. Barre L, Fournel-Gigleux S, Finel M, Netter P, Magdalou J, Ouzzine M. Substrate specificity of the human UDP-glucuronosyltransferase UGT2B4 and UGT2B7—identification of a critical aromatic amino acid residue at position 33. FEBS J. 2007;274(5):1256–64.

    Article  CAS  PubMed  Google Scholar 

  37. Negishi M, Pedersen LG, Petrotchenko E, Shevtsov S, Gorokhov A, Kakuta Y, et al. Structure and function of sulfotransferases. Arch Biochem Biophys. 2001;390(2):149–57.

    Article  CAS  PubMed  Google Scholar 

  38. Kusuhara H, Sugiyama Y. Pharmacokinetic modeling of the hepatobiliary transport mediated by cooperation of uptake and efflux transporters. Drug Metab Rev. 2010;42(3):539–50.

    Article  CAS  PubMed  Google Scholar 

  39. Zhang EY, Knipp GT, Ekins S, Swaan PW. Structural biology and function of solute transporters: implications for identifying and designing substrates. Drug Metab Rev. 2002;34(4):709–50.

    Article  CAS  PubMed  Google Scholar 

  40. Szakacs G, Varadi A, Ozvegy-Laczka C, Sarkadi B. The role of ABC transporters in drug absorption, distribution, metabolism, excretion and toxicity (ADME-Tox). Drug Discov Today. 2008;13(9–10):379–93.

    Article  CAS  PubMed  Google Scholar 

  41. Peters SA. Physiologically based pharmacokinetic (PBPK) modeling and simulations: principles, methods, and applications in the pharmaceutical industry. Hoboken: Wiley; 2011. xvii, 430 p.

  42. Locher KP. Review. Structure and mechanism of ATP-binding cassette transporters. Philos Trans R Soc Lond Ser B Biol Sci. 2009;364(1514):239–45.

    Article  CAS  Google Scholar 

  43. Chen ML. Lipid excipients and delivery systems for pharmaceutical development: a regulatory perspective. Adv Drug Deliv Rev. 2008;60(6):768–77.

    Article  CAS  PubMed  Google Scholar 

  44. Hanke U, May K, Rozehnal V, Nagel S, Siegmund W, Weitschies W. Commonly used nonionic surfactants interact differently with the human efflux transporters ABCB1 (p-glycoprotein) and ABCC2 (MRP2). Eur J Pharm Biopharm Off J Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik eV. 2010;76(2):260–8.

    CAS  Google Scholar 

  45. Zhao G, Huang J, Xue K, Si L, Li G. Enhanced intestinal absorption of etoposide by self-microemulsifying drug delivery systems: roles of P-glycoprotein and cytochrome P450 3A inhibition. Eur J Pharm Sci Off J Eur Fed Pharm Sci. 2013;50(3–4):429–39.

    CAS  Google Scholar 

  46. Ma L, Wei Y, Zhou Y, Ma X, Wu X. Effects of Pluronic F68 and Labrasol on the intestinal absorption and pharmacokinetics of rifampicin in rats. Arch Pharm Res. 2011;34(11):1939–43.

    Article  CAS  PubMed  Google Scholar 

  47. Guan Y, Huang J, Zuo L, Xu J, Si L, Qiu J, et al. Effect of pluronic P123 and F127 block copolymer on P-glycoprotein transport and CYP3A metabolism. Arch Pharm Res. 2011;34(10):1719–28.

    Article  CAS  PubMed  Google Scholar 

  48. Shaik N, Giri N, Elmquist WF. Investigation of the micellar effect of pluronic P85 on P-glycoprotein inhibition: cell accumulation and equilibrium dialysis studies. J Pharm Sci. 2009;98(11):4170–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Cornaire G, Woodley J, Hermann P, Cloarec A, Arellano C, Houin G. Impact of excipients on the absorption of P-glycoprotein substrates in vitro and in vivo. Int J Pharm. 2004;278(1):119–31.

    Article  CAS  PubMed  Google Scholar 

  50. Dintaman JM, Silverman JA. Inhibition of P-glycoprotein by D-alpha-tocopheryl polyethylene glycol 1000 succinate (TPGS). Pharm Res. 1999;16(10):1550–6.

    Article  CAS  PubMed  Google Scholar 

  51. Bogman K, Erne-Brand F, Alsenz J, Drewe J. The role of surfactants in the reversal of active transport mediated by multidrug resistance proteins. J Pharm Sci. 2003;92(6):1250–61.

    Article  CAS  PubMed  Google Scholar 

  52. Parsa A, Saadati R, Abbasian Z, Azad Aramaki S, Dadashzadeh S. Enhanced permeability of etoposide across everted sacs of rat small intestine by vitamin E-TPGS. Iran J Pharm Res IJPR. 2013;12(Suppl):37–46.

    CAS  PubMed  Google Scholar 

  53. Varma MV, Panchagnula R. Enhanced oral paclitaxel absorption with vitamin E-TPGS: effect on solubility and permeability in vitro, in situ and in vivo. Europ J Pharm Sci Off J Eur Fed Pharm Sci. 2005;25(4–5):445–53.

    CAS  Google Scholar 

  54. Bittner B, Guenzi A, Fullhardt P, Zuercher G, Gonzalez RC, Mountfield RJ. Improvement of the bioavailability of colchicine in rats by co-administration of D-alpha-tocopherol polyethylene glycol 1000 succinate and a polyethoxylated derivative of 12-hydroxy-stearic acid. Arzneimittelforschung. 2002;52(9):684–8.

    CAS  PubMed  Google Scholar 

  55. Li W, Li X, Gao Y, Zhou Y, Ma S, Zhao Y, et al. Inhibition mechanism of P-glycoprotein mediated efflux by mPEG-PLA and influence of PLA chain length on P-glycoprotein inhibition activity. Mol Pharm. 2014;11(1):71–80.

    Article  CAS  PubMed  Google Scholar 

  56. Simon S, Schubert R. Inhibitory effect of phospholipids on P-glycoprotein: cellular studies in Caco-2, MDCKII mdr1 and MDCKII wildtype cells and P-gp ATPase activity measurements. Biochimica et Biophysica Acta (BBA) - Mol Cell Biol Lipids. 2012;1821(9):1211–23.

    Article  CAS  Google Scholar 

  57. Yu H, Hu YQ, Ip FC, Zuo Z, Han YF, Ip NY. Intestinal transport of bis(12)-hupyridone in Caco-2 cells and its improved permeability by the surfactant Brij-35. Biopharm Drug Dispos. 2011;32(3):140–50.

    Article  CAS  PubMed  Google Scholar 

  58. Ashiru-Oredope DAI, Patel N, Forbes B, Patel R, Basit AW. The effect of polyoxyethylene polymers on the transport of ranitidine in Caco-2 cell monolayers. Int J Pharm. 2011;409(1–2):164–8.

    Article  CAS  PubMed  Google Scholar 

  59. Barta CA, Sachs-Barrable K, Feng F, Wasan KM. Effects of monoglycerides on P-glycoprotein: modulation of the activity and expression in Caco-2 cell monolayers. Mol Pharm. 2008;5(5):863–75.

    Article  CAS  PubMed  Google Scholar 

  60. Mo R, Xiao Y, Sun M, Zhang C, Ping Q. Enhancing effect of N-octyl-O-sulfate chitosan on etoposide absorption. Int J Pharm. 2011;409(1–2):38–45.

    Article  CAS  PubMed  Google Scholar 

  61. Vlaming ML, Lagas JS, Schinkel AH. Physiological and pharmacological roles of ABCG2 (BCRP): recent findings in Abcg2 knockout mice. Adv Drug Deliv Rev. 2009;61(1):14–25.

    Article  CAS  PubMed  Google Scholar 

  62. Yamagata T, Kusuhara H, Morishita M, Takayama K, Benameur H, Sugiyama Y. Effect of excipients on breast cancer resistance protein substrate uptake activity. J Control Release Off J Control Release Soc. 2007;124(1–2):1–5.

    Article  CAS  Google Scholar 

  63. Yamagata T, Kusuhara H, Morishita M, Takayama K, Benameur H, Sugiyama Y. Improvement of the oral drug absorption of topotecan through the inhibition of intestinal xenobiotic efflux transporter, breast cancer resistance protein, by excipients. Drug Metab Dispos Biol Fate Chem. 2007;35(7):1142–8.

    Article  CAS  PubMed  Google Scholar 

  64. Yamagata T, Morishita M, Kusuhara H, Takayama K, Benameur H, Sugiyama Y. Characterization of the inhibition of breast cancer resistance protein-mediated efflux of mitoxantrone by pharmaceutical excipients. Int J Pharm. 2009;370(1–2):216–9.

    Article  CAS  PubMed  Google Scholar 

  65. Aspenstrom-Fagerlund B, Tallkvist J, Ilback NG, Glynn AW. Oleic acid decreases BCRP mediated efflux of mitoxantrone in Caco-2 cell monolayers. Food Chem Toxicol Int J Published Br Ind Biol Res Assoc. 2012;50(10):3635–45.

    Article  Google Scholar 

  66. Dietrich CG, Geier A, Oude Elferink RP. ABC of oral bioavailability: transporters as gatekeepers in the gut. Gut. 2003;52(12):1788–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Li L, Yi T, Lam CW. Interactions between human multidrug resistance related protein (MRP2; ABCC2) and excipients commonly used in self-emulsifying drug delivery systems (SEDDS). Int J Pharm. 2013;447(1–2):192–8.

    Article  CAS  PubMed  Google Scholar 

  68. Li L, Yi T, Lam CW. Inhibition of human efflux transporter ABCC2 (MRP2) by self-emulsifying drug delivery system: influences of concentration and combination of excipients. J Pharm Pharm Sci Publ Can Soc Pharm Sci Soc Can Sci Pharm. 2014;17(4):447–60.

    CAS  Google Scholar 

  69. Jia JX, Wasan KM. Effects of monoglycerides on rhodamine 123 accumulation, estradiol 17 beta-D-glucuronide bidirectional transport and MRP2 protein expression within Caco-2 cells. J Pharm Pharm Sci Publ Can Soc Pharm Sci Soc Can Sci Pharm. 2008;11(3):45–62.

    CAS  Google Scholar 

  70. Tamai I. Oral drug delivery utilizing intestinal OATP transporters. Adv Drug Deliv Rev. 2012;64(6):508–14.

    Article  CAS  PubMed  Google Scholar 

  71. Engel A, Oswald S, Siegmund W, Keiser M. Pharmaceutical excipients influence the function of human uptake transporting proteins. Mol Pharm. 2012;9(9):2577–81.

    Article  CAS  PubMed  Google Scholar 

  72. Porter CJ, Trevaskis NL, Charman WN. Lipids and lipid-based formulations: optimizing the oral delivery of lipophilic drugs. Nat Rev Drug Discov. 2007;6(3):231–48.

    Article  CAS  PubMed  Google Scholar 

  73. Houston JB, Levy H. Effect of various alcohols on intestinal net water flux and theophylline absorption in rats. J Pharm Sci. 1975;64.

  74. Ashiru DA, Patel R, Basit AW. Polyethylene glycol 400 enhances the bioavailability of a BCS class III drug (ranitidine) in male subjects but not females. Pharm Res. 2008;25(10):2327–33.

    Article  CAS  PubMed  Google Scholar 

  75. Stavchansky S. Scientific perspectives on extending the provision for waivers of in vivo bioavailability and bioequivalence studies for drug products containing high solubility-low permeability drugs (BCS-Class 3). AAPS J. 2008;10(2):300–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Basit AW, Podczeck F, Newton JM, Waddington WA, Ell PJ, Lacey LF. Influence of polyethylene glycol 400 on the gastrointestinal absorption of ranitidine. Pharm Res. 2002;19(9):1368–74.

    Article  CAS  PubMed  Google Scholar 

  77. Schulze JD, Waddington WA, Eli PJ, Parsons GE, Coffin MD, Basit AW. Concentration-dependent effects of polyethylene glycol 400 on gastrointestinal transit and drug absorption. Pharm Res. 2003;20(12):1984–8.

    Article  CAS  PubMed  Google Scholar 

  78. Tomaru A, Takeda-Morishita M, Maeda K, Banba H, Takayama K, Kumagai Y, et al. Effects of Cremophor EL on the absorption of orally administered saquinavir and fexofenadine in healthy subjects. Drug Metab Pharmacokinet. 2015;30(3):221–6.

    Article  CAS  PubMed  Google Scholar 

  79. Vaithianathan S, Haidar SH, Zhang X, Jiang W, Avon C, Dowling TC, et al. Effect of common excipients on the oral drug absorption of biopharmaceutics classification system class 3 drugs cimetidine and acyclovir. J Pharm Sci. 2015:n/a-n/a.

  80. Chen ML, Straughn AB, Sadrieh N, Meyer M, Faustino PJ, Ciavarella AB, et al. A modern view of excipient effects on bioequivalence: case study of sorbitol. Pharm Res. 2007;24(1):73–80.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Zhang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Guest Editor: Peng Zou

Wenpeng Zhang and Yanyan Li contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Li, Y., Zou, P. et al. The Effects of Pharmaceutical Excipients on Gastrointestinal Tract Metabolic Enzymes and Transporters—an Update. AAPS J 18, 830–843 (2016). https://doi.org/10.1208/s12248-016-9928-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-016-9928-8

Keywords

Navigation