Skip to main content

Advertisement

Log in

Commonly Used Excipients Modulate UDP-Glucuronosyltransferase 2B7 Activity to Improve Nalbuphine Oral Bioavailability in Humans

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Nalbuphine (NAL) is a potent opioid analgesic, but can only be administered by injection. The major aim of this study was to develop an oral NAL formulation employing known excipients as UDP-glucuronosyltransferase 2B7 (UGT2B7) inhibitors to improve its oral bioavailability.

Methods

Twenty commonly used pharmaceutical excipients were screened in vitro by using liver microsomes to identify inhibitors of UGT2B7, the major NAL metabolic enzyme. Tween 20 and PEG 400 were potent UGT2B7 inhibitors and both were co-administered (Tween-PEG) with NAL to rats and humans for pharmacokinetic and/or pharmacodynamic analyses.

Results

In animal studies, oral Tween-PEG (4 mg/kg of each) significantly increased the area under the plasma NAL concentration-time curve (AUC) and the maximal plasma concentration (Cmax) by 4- and 5-fold, respectively. The results of the pharmacodynamic analysis were in agreement with those of the pharmacokinetic analysis, and showed that Tween-PEG significantly enhanced the analgesic effects of orally administered NAL. In humans, oral Tween-PEG (240 mg of each) also increased NAL Cmax 2.5-fold, and AUC by 1.6-fold.

Conclusions

Tween-PEG successfully improved oral NAL bioavailability and could formulate a useful oral dosage form for patient’s convenience.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CET:

Cold ethanol tail-flick

ESI:

Electrospray ionization

FDA:

Food and Drug Administration

GRAS:

Generally recognized as safe

GSP:

Galactose single point

HLM:

Human liver microsome

IIG:

Inactive ingredient guide

M3G:

Morphine-3-glucuronide

NAL:

Nalbuphine

PEG:

Polyethylene glycol

PVP:

Polyvinyl pyrrolidone

RLM:

Rat liver microsome

Tween-PEG:

The combination with equal dose of Tween 20 and PEG 400

UGT:

Uridinyl diphosphate glucuronosyltransferase

UPLC–MS/MS:

Ultra-high performance liquid chromatography tandem mass

WHO:

World Health Organization

References

  1. Kalasz H, Antal I. Drug excipients. Curr Med Chem. 2006;13:2535–63.

    Article  CAS  PubMed  Google Scholar 

  2. Chen ML. Lipid excipients and delivery systems for pharmaceutical development: a regulatory perspective. Adv Drug Deliv Rev. 2008;60(6):768–77.

    Article  CAS  PubMed  Google Scholar 

  3. Buggins TR, Dickinson PA, Taylor G. The effects of pharmaceutical excipients on drug disposition. Adv Drug Deliv Rev. 2007;59(15):1482–503.

    Article  CAS  PubMed  Google Scholar 

  4. Wandel C, Kim RB, Stein CM. “Inactive” excipients such as Cremophor can affect in vivo drug disposition. Clin Pharmacol Ther. 2003;73(5):394–6.

    Article  CAS  PubMed  Google Scholar 

  5. Bravo González RC, Huwyler J, Boess F, Walter I, Bittner B. In vitro investigation on the impact of the surface-active excipients Cremophor EL, Tween 80 and Solutol HS 15 on the metabolism of midazolam. Biopharm Drug Dispos. 2004;25(1):37–49.

    Article  PubMed  Google Scholar 

  6. Tayrouz Y, Ding R, Burhenne J, Riedel KD, Weiss J, Hoppe-Tichy T, et al. Pharmacokinetic and pharmaceutic interaction between digoxin and Cremophor RH40. Clin Pharmacol Ther. 2003;73(5):397–405.

    Article  CAS  PubMed  Google Scholar 

  7. Bittner B, González RC, Walter I, Kapps M, Huwyler J. Impact of Solutol HS 15 on the pharmacokinetic behaviour of colchicine upon intravenous administration to male Wistar rats. Biopharm Drug Dispos. 2003;24(4):173–81.

    Article  CAS  PubMed  Google Scholar 

  8. Mountfield RJ, Senepin S, Schleimer M, Walter I, Bittner B. Potential inhibitory effects of formulation ingredients on intestinal cytochrome P450. Int J Pharm. 2000;211(1–2):89–92.

    Article  CAS  PubMed  Google Scholar 

  9. Cornaire G, Woodley J, Hermann P, Cloarec A, Arellano C, Houin G. Impact of excipients on the absorption of P-glycoprotein substrates in vitro and in vivo. Int J Pharm. 2004;278:119–31.

    Article  CAS  PubMed  Google Scholar 

  10. Ren X, Mao X, Cao L, Xue K, Si L, Qiu J, et al. Nonionic surfactants are strong inhibitors of cytochrome p4503A biotransformation activity in vitro and in vivo. Eur J Pharm Sci. 2009;36:401–11.

    Article  CAS  PubMed  Google Scholar 

  11. Melnikova I. Pain market. Nat Rev Drug Discov. 2010;9:589–90.

    Article  CAS  PubMed  Google Scholar 

  12. Snidvongs S, Mehta V. Recent advances in opioid prescription for chronic non-cancer pain. Postgrad Med J. 2012;88:66–72.

    Article  CAS  PubMed  Google Scholar 

  13. Amabile CM, Bowman BJ. Overview of oral modified-release opioid products for the management of chronic pain. Ann Pharmacother. 2006;40:1327–35.

    Article  CAS  PubMed  Google Scholar 

  14. Beaver WT, Feise GA, Robb D. Analgesic effect of intramuscular and oral nalbuphine in postoperative pain. Clin Pharmacol Ther. 1981;29(2):174–80.

    Article  CAS  PubMed  Google Scholar 

  15. Kelley NE, Tepper DE. Rescue therapy for acute migraine, part 3: opioids, NSAIDs, steroids, and post-discharge medications. Headache. 2012;52(3):467–82.

    Article  PubMed  Google Scholar 

  16. Pugh CC, Drummond RA. A dose-response study with nalbuphine hydrochloride for pain in patients after upper abdominal surgery. Br J Anaesth. 1987;59(11):1356–64.

    Article  CAS  PubMed  Google Scholar 

  17. Jang S, Kim H, Kim D, Jeong MW, Ma T, Kim S, et al. Attenuation of morphine tolerance and withdrawal syndrome by coadministration of nalbuphine. Arch Pharm Res. 2006;29:677–84.

    Article  CAS  PubMed  Google Scholar 

  18. Schmidt WK, Tam SW, Shotzberger GS, Smith Jr DH, Clark R, Vernier VG. Nalbuphine. Drug Alcohol Depen. 1985;14(3–4):339–62.

    Article  CAS  Google Scholar 

  19. Aitkenhead AR, Lin ES, Achola KJ. The pharmacokinetics of oral and intravenous nalbuphine in healthy volunteers. Br J Clin Pharmacol. 1988;25(2):264–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Lo MW, Schary WL, Whitney Jr CC. The disposition and bioavailability of intravenous and oral nalbuphine in healthy volunteers. J Clin Pharmacol. 1987;27(11):866–73.

    Article  CAS  PubMed  Google Scholar 

  21. Wang HJ, Hsiong CH, Pao LH, Chang WL, Zhang LJ, Lin MJ, et al. New finding of nalbuphine metabolites in men: NMR spectroscopy and UPLC–MS/MS spectrometry assays in a pilot human study. Metabolomics. 2013. doi:10.1007/s11306-013-0605-y.

    PubMed Central  PubMed  Google Scholar 

  22. King CD, Rios GR, Green MD, Tephly TR. UDP-glucuronosyltransferases. Curr Drug Metab. 2000;1(2):143–61.

    Article  CAS  PubMed  Google Scholar 

  23. Kay B, Lindsay RG, Mason CJ, Healy TE. Oral nalbuphine for the treatment of pain after dental extractions. Br J Anaesth. 1988;61(3):313–7.

    Article  CAS  PubMed  Google Scholar 

  24. Okun R. Analgesic effects of oral nalbuphine and codeine in patients with postoperative pain. Clin Pharmacol Ther. 1982;32(4):517–24.

    Article  CAS  PubMed  Google Scholar 

  25. Hanks GW. The clinical usefulness of agonist-antagonistic opioid analgesics in chronic pain. Drug Alcohol Depend. 1987;20:339–46.

    Article  CAS  PubMed  Google Scholar 

  26. Pao LH, Hu OYP, Fan HY, Lin CC, Liu LC, Huang PW. Herb-drug interaction of 50 Chinese herbal medicines on CYP3A4 activity in vitro and in vivo. Am J Chin Med. 2012;40(1):57–73.

    Article  PubMed  Google Scholar 

  27. Coffman BL, Rios GR, King CD, Tephly TR. Human UGT2B7 catalyzes morphine glucuronidation. Drug Metab Dispos. 1997;25:1–4.

    CAS  PubMed  Google Scholar 

  28. Wahlstrom A, Lenhammar L, Ask B, Rane A. Tricyclic antidepressants inhibit opioid receptor binding in human brain and hepatic morphine glucuronidation. Pharmacol Toxicol. 1994;75(1):23–7.

    Article  CAS  PubMed  Google Scholar 

  29. Wang JJ, Ho ST, Hu OYP, Chu KM. An innovative cold tail-flick test: the cold ethanol tail-flick test. Anesth Analg. 1995;80:102–7.

    CAS  PubMed  Google Scholar 

  30. Tang HS, Hu OYP. Assessment of liver function using a novel galactose single point method. Digestion. 1992;52:222–31.

    Article  CAS  PubMed  Google Scholar 

  31. Panakanti R, Narang AS. Impact of excipient interactions on drug bioavailability from solid dosage forms. Pharm Res. 2012;29:2639–59.

    Article  CAS  PubMed  Google Scholar 

  32. World Health Organization. http://www.inchem.org/documents/jecfa/jecmono/v05je47.htm

  33. World Health Organization. http://www.inchem.org/documents/jecfa/jecmono/v05je19.htm

  34. Tukey RH, Strassburg CP. Human UDP-glucuronosyltransferases: metabolism, expression, and disease. Annu Rev Pharmacol Toxicol. 2000;40:581–616.

    Article  CAS  PubMed  Google Scholar 

  35. Rege BD, Kao JPY, Polli JE. Effects of nonionic surfactants on membrane transporters in Caco-2 cell monolayers. Eur J Pharm Sci. 2002;16(4–5):237–46.

    Article  CAS  PubMed  Google Scholar 

  36. da Silva MEF, Meirelles NC. Interaction of non-ionic surfactants with hepatic CYP in Prochilodus scrofa. Toxicol in Vitro. 2004;18(6):859–67.

    Article  PubMed  Google Scholar 

  37. Hussain MA, Aungst BJ, Shefter E. Buccal and oral bioavailability of nalbuphine in rats. J Pharm Sci. 1986;75:218–9.

    Article  CAS  PubMed  Google Scholar 

  38. Malingre MM, Schellens JH, Van Tellingen O, Ouwehand M, Bardelmeijer HA, Rosing H, et al. The co-solvent Cremophor EL limits absorption of orally administered paclitaxel in cancer patients. Br J Cancer. 2001;85(10):1472–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Zhu S, Huang R, Hong M, Jiang Y, Hu Z, Liu C, et al. Effects of polyoxyethylene (40) stearate on the activity of P-glycoprotein and cytochrome P450. Eur J Pharm Sci. 2009;37:573–80.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

This study was funded by The Department of Health, Executive Yuan of Taiwan (No. DOH97-TD-I-111-DD002). No conflict of interest to be declared by authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Yoa-Pu Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, HJ., Hsiong, CH., Ho, ST. et al. Commonly Used Excipients Modulate UDP-Glucuronosyltransferase 2B7 Activity to Improve Nalbuphine Oral Bioavailability in Humans. Pharm Res 31, 1676–1688 (2014). https://doi.org/10.1007/s11095-013-1272-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-013-1272-4

KEY WORDS

Navigation