Skip to main content
Log in

Memristor reduces conduction failure of action potentials along axon with Hopf bifurcation

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Memristor has been identified to modulate electronic activities of the nervous system, and conduction failure of action potentials along axon has been identified to play important roles in information transition related to pathological pain. In the present paper, the influences of the memristor on the conduction failure induced by the external stimulation with high frequency are investigated. After introducing electromagnetic induction mediated by memristor into Hodgkin-Hexley (HH) model, the Hopf bifurcation advances with increasing depolarization current, and the membrane potential of the resting state near the bifurcation increases. Such two changes mainly lead to the decrease of conduction failure rate of action potentials along axon which is described with a network model composed of HH neurons. Moreover, the reduction of conduction failure rate induced by memristor is well interpreted with the nonlinear dynamics near the bifurcation point, for example, the dynamics of the current threshold to evoke the second action potential from the after-potential following the first one. The results present that memristor can promote the conduction ability of action potentials along axon, which presents a novel function of memristor and contributes to the information transmission related to pathological pain in the nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.O. Chua, IEEE Trans. Circ. Theor. 18, 507 (1971)

    Article  Google Scholar 

  2. Y. Babacan, F. Kacar, K. Gürkan, Neurocomputing 203, 86 (2016)

    Article  Google Scholar 

  3. A.L. Wu, Z.G. Zeng, X.S. Zhu, J.N. Zhang, Neurocomputing 74, 3043 (2011)

    Article  Google Scholar 

  4. J. Kengne, A.N. Negou, D. Tchiotsop, Nonlinear Dyn. 88, 2589 (2017)

    Article  Google Scholar 

  5. R. Rakkiyappan, G. Velmurugan, X.D. Li, D. O’Regan, Neural Comput. Appl. 27, 629 (2016)

    Article  Google Scholar 

  6. V.T. Pham, C. Volos, L.V. Gambuzza, Sci. World J. 2014, 368986 (2014)

    Article  Google Scholar 

  7. D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, Nature 453, 80 (2008)

    Article  ADS  Google Scholar 

  8. S.H. Jo, T. Chang, I. Ebong, B.B. Bhadviya, P. Mazumder, L. Wei, Nano Lett. 10, 1297 (2010)

    Article  ADS  Google Scholar 

  9. A. Thomas, J. Phys. D: Appl. Phys. 46, 093001 (2013)

    Article  ADS  Google Scholar 

  10. J.F. Barry, M.J. Turner, J.M. Schloss, D.R. Glenn, Y. Song, M.D. Lukin, H. Park, R.L. Walsworth, Proc. Natl. Acad. Sci. 49, 14133 (2016)

    Article  ADS  Google Scholar 

  11. Z. Rostami, V.T. Pham, S. Jafari, F. Hadaeghi, J. Ma, Appl. Math. Comput. 338, 141 (2018)

    MathSciNet  Google Scholar 

  12. M. Lv, C.N. Wang, G.D. Ren, J. Ma, X.L. Song, Nonlinear Dyn. 85, 1479 (2016)

    Article  Google Scholar 

  13. Y. Wang, J. Ma, Y. Xu, F.Q. Wu, P. Zhou, Int. J. Bifurc. Chaos 27, 1750030 (2017)

    Article  Google Scholar 

  14. F.Q. Wu, C.N. Wang, W.Y. Jin, J. Ma, Physica A 469, 81 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  15. G. Zhang, F.Q. Wu, T. Hayat, J. Ma, Commun. Nonlinear Sci. Numer. Simul. 65, 79 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  16. L.L. Lu, J.B. Kirunda, Y. Xu, W.J. Kang, R. Ye, X. Zhan, Y. Jia, Eur. Phys. J. Special Topics 227, 767 (2018)

    Article  ADS  Google Scholar 

  17. M.Y. Ge, Y. Xu, Z.K. Zhang, Y.X. Peng, W.J. Kang, L.J. Yang, Y. Jia, Eur. Phys. J. Special Topics 227, 799 (2018)

    Article  ADS  Google Scholar 

  18. B.J. Roth, P.J. Basser, IEEE Trans. Biomed. Eng. 37, 588 (1990)

    Article  Google Scholar 

  19. S. Mostaghimi, F. Nazarimehr, S. Jafari, J. Ma, Appl. Math. Comput. 348, 42 (2019)

    MathSciNet  Google Scholar 

  20. Z. Rostami, K. Rajagopal, A.J.M. Khalaf, S. Jafari, M. Perc, M. Slavinec, Physica. A 509, 1162 (2018)

    Article  ADS  Google Scholar 

  21. F. Parastesh, H. Azarnoush, S. Jafari, B. Hatef, M. Perc, R. Repnik, Appl. Math. Comput. 350, 217 (2019)

    MathSciNet  Google Scholar 

  22. B. Cao, L.N. Guan, H.G. Gu, Acta Phys. Sin. 67 240502 (2018) (in Chinese)

    Google Scholar 

  23. F. Nazarimehr, S.M.R.H. Golpayegani, B. Hatef, Eur. Phys. J. Special Topics 227, 697 (2018)

    Article  ADS  Google Scholar 

  24. A.A. Faisal, S.B. Laughlin, PLoS Comput. Biol. 3, e79 (2007)

    Article  ADS  Google Scholar 

  25. Y.G. Yao, J. Ma, Eur. Phys. J. Special Topics 227, 757 (2018)

    Article  ADS  Google Scholar 

  26. A.L. Hodgkin, A.F. Huxley, J. Physiol. 117, 500 (1952)

    Article  Google Scholar 

  27. Z.R. Zhu, X.W. Tang, W.T. Wang, W. Ren, J.L. Xing, J.R. Zhang, J.H. Duan, Y.Y. Wang, X.Y. Jiao, S.J. Hu, Neurosignals 17, 181 (2009)

    Article  Google Scholar 

  28. W. Sun, B. Miao, X.C. Wang, J.H. Duan, W.T. Wang, F. Kuang, R.G. Xie, J.L. Xing, H. Xu, X.J. Song, C. Luo, S.J. Hu, Brain 135, 359 (2012)

    Article  Google Scholar 

  29. X.C. Wang, S. Wang, W.T. Wang, J.H. Duan, M. Zhang, X.H. Lv, C.X. Niu, C. Tan, Y.B. Wu, J. Yang, S.J. Hu, J.L. Xing, Pain 157, 2235 (2016)

    Article  Google Scholar 

  30. S.L. Guo, C.N. Wang, J. Ma, W.Y. Jin, Neurocomputing 216, 627 (2016)

    Article  Google Scholar 

  31. R. Follmann, E. Rosa, W. Stein, Phys. Rev. E 92, 032707 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  32. S.Y. Zeng, Y. Tang, Phys. Rev. E 80, 021917 (2009)

    Article  ADS  Google Scholar 

  33. A.L. Fitch, D. Yu, H.H.C. Iu, V. Sreeram, Int. J. Bifurc. Chaos 22, 8 (2012)

    Article  Google Scholar 

  34. B. Muthuswamy, Int. J. Bifurc. Chaos 20, 1335 (2010)

    Article  Google Scholar 

  35. Q.D. Li, H.Z. Zeng, J. Li, Nonlinear Dyn. 79, 2295 (2015)

    Article  Google Scholar 

  36. B. Ermentrout, Simulating, analyzing, and animating dynamical systems: A guide to XPPAUT for researchers and students (SIAM, Philadelphia, 2002)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huaguang Gu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Gu, H. & Wu, F. Memristor reduces conduction failure of action potentials along axon with Hopf bifurcation. Eur. Phys. J. Spec. Top. 228, 2053–2063 (2019). https://doi.org/10.1140/epjst/e2019-900004-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2019-900004-2

Navigation