Skip to main content

Advertisement

Log in

Dynamic compaction of polyurethane foam: experiments and modelling

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

The framework of this paper is to investigate the mitigation ability of an expanded rigid polyurethane foam against extremely fast (>106 s−1) and intense ( >10 GPa) dynamic loadings. Cyclic quasi-static tests and dynamic experiments (gas gun and low inductance generator) have been performed to investigate the foam behaviour for strain rates ranging from 10−3 to 105 s−1. Analysis of the experimental results shows that the foam has an elastic behaviour phase followed by a compaction phase with significant permanent sets. Compaction threshold is about 8 MPa under quasi-static loading, and 21 MPa for strain rates above 104 s−1. A porous compaction model is used to represent the macroscopic behaviour of the foam for the whole range of strain rates. The parameters are identified from dynamic experimental results. The model is validated by comparing calculated velocity profiles with an explicit hydrocode and velocity profiles measured during the experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F.A.O. Fernandes, R.T. Jardin, A.B. Pereira, R.J. Alves de Sousa, Mater. Des. 82, 335 (2015)

    Article  Google Scholar 

  2. A. Pellegrino, V.L. Tagarielli, R. Gerlach, N. Petrinic, Int. J. Impact Eng. 75, 214 (2015)

    Article  Google Scholar 

  3. S.H. Goods, C.L. Neschwanger, C. Henderson, D.M. Skala, Mechanical properties and energy absorption characteristics of a polyurethane foam, Technical report, Sandia National Laboratories, 1997

  4. J.C. Gowda, A flexible syntactic foam for shock mitigation, Ph.D. thesis, North Carolina A&T State University, 2011

  5. H. Jmal, Identification du comportement quasi-statique et dynamique de la mousse de polyuréthane au travers de modèles à mémoire, Ph.D. thesis, Université de Haute Alsace, 2012

  6. Z.H. Tu, V.P.W. Shim, C.T. Lim, Int. J. Solids Struct. 38, 9267 (2001)

    Article  Google Scholar 

  7. W. Chen, F. Lu, N. Winfree, Exp. Mech. 42, 65 (2002)

    Article  Google Scholar 

  8. E. Zaretsky, Z. Asaf, E. Ran, F. Aizik, Int. J. Impact Eng. 39, 1 (2012)

    Article  Google Scholar 

  9. D.M. Dattelbaum, J.D. Coe, C.B. Kiyanda, R.L. Gustavsen, B.M. Patterson, J. Appl. Phys. 115, 174908 (2014)

    Article  ADS  Google Scholar 

  10. P.L. Hereil, F. Lassalle, G. Avrillaud, AIP Conf. Proc. 706, 1209 (2004)

    Article  ADS  Google Scholar 

  11. L.J. Gibson, M.F. Ashby,Cellular solids: structure and properties – second edition (Cambridge University Press, 1997)

  12. F. Saint-Michel, L. Chazeau, J.Y. Cavaillé, E. Chabert, Compos. Sci. Technol. 66, 2700 (2006)

    Article  Google Scholar 

  13. P. Pradel, F. Malaise, T. de Rességuier, C. Delhomme, B. Cadilhon, J.H. Quessada, G. Le Blanc, Stress wave propagation and mitigation in two polymeric foams, inProceedings of the 2017 APS-SCCM conference (2017)

  14. L. Seaman, R.E. Tokheim, D.R. Curran, Computational representation of constitutive relations for porous materials, Technical report, Stanford Research Institute, 1974

  15. J.K. Mckenzie, Proc. Phys. Soc. 63, 2 (1950)

    Article  ADS  Google Scholar 

  16. P. Pradel, Étude de la compaction dynamique de mousses polymères : Expériences et modélisation, Ph.D. thesis, École Nationale Supérieure de Mécanique et d’Aérotechnique, 2017, https://doi.org/tel.archives-ouvertes.fr/tel-01737770v1

  17. S.P. Marsh,LASL shock Hugoniot data (University of California Press, 1980)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Pradel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pradel, P., Malaise, F., de Rességuier, T. et al. Dynamic compaction of polyurethane foam: experiments and modelling. Eur. Phys. J. Spec. Top. 227, 3–16 (2018). https://doi.org/10.1140/epjst/e2018-00116-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2018-00116-7

Navigation