Skip to main content
Log in

Motion of Euglena gracilis: Active fluctuations and velocity distribution

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

We study the velocity distribution of unicellular swimming algae Euglena gracilis using optical microscopy and active Brownian particle theory. To characterize a peculiar feature of the experimentally observed distribution at small velocities we use the concept of active fluctuations, which was recently proposed for the description of stochastically self-propelled particles [Romanczuk, P. and Schimansky-Geier, L., Phys. Rev. Lett. 106, 230601 (2011)]. In this concept, the fluctuating forces arise due to internal random performance of the propulsive motor. The fluctuating forces are directed in parallel to the heading direction, in which the propulsion acts. In the theory, we introduce the active motion via the depot model [Schweitzer, et al., Phys. Rev. Lett. 80(23), 5044 (1998)]. We demonstrate that the theoretical predictions based on the depot model with active fluctuations are consistent with the experimentally observed velocity distributions. In addition to the model with additive active noise, we obtain theoretical results for a constant propulsion with multiplicative noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Einstein, Ann. Phys. 17, 549 (1905)

    Article  MATH  Google Scholar 

  2. P. Langevin, C.R. Hebd. Seances Acad. Sci 146, 530 (1908)

    MATH  Google Scholar 

  3. M. von Smoluchowski, Ann. Phys. 326, 756 (1906)

    Article  Google Scholar 

  4. P. Reimann, Phys. Rep. 361(2-4), 57 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. B.M. Friedrich, F. Jülicher, Proc. Natl. Acad. Sci. USA 104, 13256 (2007)

    Article  ADS  Google Scholar 

  6. S. van Teeffelen, H. Löwen, Phys. Rev. E 78, 020101 (2008)

    Article  Google Scholar 

  7. D. Selmeczi, L. Li, L.I. Pedersen, S.F. Nørrelykke, P.H. Hagedorn, S. Mosler, N.B. Larsen, E.C. Cox, H. Flyvbjerg, Eur. Phys. J. Special Topics 157, 1 (2008)

    Article  ADS  Google Scholar 

  8. H. Bödeker, C. Beta, T. Frank, E. Bodenschatz, Europhys. Lett. 90(2) (2010)

  9. L. Li, S.F. Nørrelykke, E.C. Cox, PLoS ONE 3, e2093 (2008)

    Article  ADS  Google Scholar 

  10. R. Dilao, M.J.B. Hauser, Comptes Rendus Biologies 336(11–12), 565 (2013)

    Article  Google Scholar 

  11. H. Niwa, J. Theor. Biol. 171, 123 (1994)

    Article  Google Scholar 

  12. N. Komin, U. Erdmann, L. Schimansky-Geier, Fluct. Noise Lett. 4, L151 (2004)

    Article  Google Scholar 

  13. S. Bazazi, P. Romanczuk, S. Thomas, L. Schimansky-Geier, J.J. Hale, G.A. Miller, G.A. Sword, S.J. Simpson, I.D. Couzin, Proc. R. Soc. B: Biol. Sci. (2010)

  14. W.F. Paxton, K.C. Kistler, C.C. Olmeda, A. Sen, S.K.S. Angelo, Y. Cao, T.E. Mallouk, P.E. Lammert, V.H. Crespi, J. Am. Chem. Soc. 126, 13424 (2004)

    Article  Google Scholar 

  15. J.R. Howse, R.A.L. Jones, A.J. Ryan, T. Gough, R. Vafabakhsh, R. Golestanian, Phys. Rev. Lett. 99, 048102 (2007)

    Article  ADS  Google Scholar 

  16. G. Ruckner, R. Kapral, Phys. Rev. Lett. 98, 150603 (2007)

    Article  ADS  Google Scholar 

  17. K.V. Kumar, S. Ramaswamy, M. Rao, Phys. Rev. E 77, 020102 (2008)

    Article  ADS  Google Scholar 

  18. P. Tierno, R. Albalat, F. Sagués, Small 6, 1749 (2010)

    Article  Google Scholar 

  19. T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen, O. Shochet, Phys. Rev. Lett. 75, 1226 (1995)

    Article  ADS  Google Scholar 

  20. I.D. Couzin, J. Krause, R.J., G.D. Ruxton, N.R. Franks, J. Theor. Biol. 218, 1 (2002)

    Article  MathSciNet  Google Scholar 

  21. H. Chate, F. Ginelli, R. Montagne, Phys. Rev. Lett. 96, 180602 (2006)

    Article  ADS  Google Scholar 

  22. J. Buhl, D.J.T. Sumpter, I.D. Couzin, J.J. Hale, E. Despland, E.R. Miller, S.J. Simpson, Science 312, 1402 (2006)

    Article  ADS  Google Scholar 

  23. A. Sokolov, I.S. Aranson, J.O. Kessler, R.E. Goldstein, Phys. Rev. Lett. 98, 158102 (2007)

    Article  ADS  Google Scholar 

  24. A. Baskaran, M.C. Marchetti, Proc. Natl. Acad. Sci. USA 106, 15567 (2009)

    Article  ADS  Google Scholar 

  25. P. Romanczuk, M. Bär, W. Ebeling, B. Lindner, L. Schimansky-Geier, Eur. Phys. J. Special Topics 202, 1 (2012)

    Article  ADS  Google Scholar 

  26. M.C. Marchetti, J.F. Joanny, S. Ramaswamy, T.B. Liverpool, J. Prost, M. Rao, R.A. Simha, Rev. Mod. Phys. 85, 1143 (2013)

    Article  ADS  Google Scholar 

  27. A. Kudrolli, G. Lumay, D. Volfson, L.S. Tsimring, Phys. Rev. Lett. 100, 058001 (2008)

    Article  ADS  Google Scholar 

  28. F. Peruani, L.G. Morelli, Phys. Rev. Lett. 99, 010602 (2007)

    Article  ADS  Google Scholar 

  29. P. Romanczuk, L. Schimansky-Geier, Phys. Rev. Lett. 106, 230601 (2011)

    Article  ADS  Google Scholar 

  30. M. Theves, J. Taktikos, V. Zaburdaev, H. Stark, C. Beta, Biophys. J. 105, 1915 (2013)

    Article  ADS  Google Scholar 

  31. F. Detcheverry, Eur. Phys. J. E 37, 114 (2014)

    Article  Google Scholar 

  32. F. Thiel, L. Schimansky-Geier, I.M. Sokolov, Phys. Rev. E 86, 021117 (2012)

    Article  ADS  Google Scholar 

  33. D. Mizuno, C. Tardin, C.F. Schmidt, F.C. MacKintosh, Science 315, 370 (2007)

    Article  ADS  Google Scholar 

  34. C.P. Brangwynne, G.H. Koenderink, F.C. MacKintosh, D.A. Weitz, Trends Cell Biol. 19, 423 (2009)

    Article  Google Scholar 

  35. E. Fodor, K. Kanazawa, H. Hayakawa, P. Visco, F. van Wijland, Phys. Rev. E 90, 042724 (2014)

    Article  ADS  Google Scholar 

  36. R. Ma, G.S. Klindt, I.H. Riedel-Kruse, F. Jülicher, B.M. Friedrich, Phys. Rev. Lett. 113, 048101 (2014)

    Article  ADS  Google Scholar 

  37. B. Deihn, Biochim. Biophys. Acta 177, 136 (1969)

    Article  Google Scholar 

  38. K. Ozasa, J. Lee, S. Song, M. Maeda, Plant Cell Physiol. 55, 1704 (2014)

    Article  Google Scholar 

  39. M. Ntefidou, M. Iseki, M. Watanabe, M. Lebert, D. Häder, Plant Physiol. 133, 1517 (2003)

    Article  Google Scholar 

  40. K. Ozasa, L. Lee, S. Song, M. Hara, M. Maeda, Appl. Soft Comp. 13, 527 (2013)

    Article  Google Scholar 

  41. F. Schweitzer, W. Ebeling, B. Tilch, Phys. Rev. Lett. 80, 5044 (1998)

    Article  ADS  Google Scholar 

  42. W. Ebeling, F. Schweitzer, B. Tilch, Biosystems 49, 17 (1999)

    Article  Google Scholar 

  43. F. Schweitzer, Brownian Agents and Active Particles: Collective Dynamics in the Natural and Social Sciences. Synergetics (Springer, 2003)

  44. U. Erdmann, W. Ebeling, L. Schimansky-Geier, F. Schweitzer, Eur. Phys. J. B 15, 105 (2000)

    Article  ADS  Google Scholar 

  45. R. Großmann, L. Schimansky-Geier, P. Romanczuk, New J. Phys. 14, 073033 (2012)

    Article  ADS  Google Scholar 

  46. M. Romensky, D. Scholz, V. Lobaskin, J. R. Soc. Interface 12, 20150015 (2015)

    Article  Google Scholar 

  47. M. Schienbein, H. Gruler, Bull. Math. Biol. 55, 585 (1993)

    Article  MATH  Google Scholar 

  48. V. Anishchenko, T. Astakhov, Vadivasova, A. Neiman, L. Schimansky-Geier, Nonlinear Dynamics of Chaotic and Stochastic Systems. Synergetics (Springer, 2003)

  49. P. Romanczuk, Active Motion and Swarming. From Individual to Collective Dynamics, Nichtlineare und Stochastische Physik, Vol. 12 (Logos Verlag, Berlin, 2011)

  50. M. Ntefidou, D. Häder, Photochem. Photobiol. Sci. 4, 732 (2005)

    Article  Google Scholar 

  51. V. Daiker, D. Häder, P. Richter, M. Lebert, Planta 233, 1055 (2011)

    Article  Google Scholar 

  52. H. Ke, S. Ye, R.L. Carroll, K. Showalter, J. Phys. Chem. A 114, 5462 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Lobaskin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romanczuk, P., Romensky, M., Scholz, D. et al. Motion of Euglena gracilis: Active fluctuations and velocity distribution. Eur. Phys. J. Spec. Top. 224, 1215–1229 (2015). https://doi.org/10.1140/epjst/e2015-02456-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2015-02456-1

Keywords

Navigation