Skip to main content
Log in

Describing transport across complex biological interfaces

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

It has long been known that proteins are capable of transporting ions against a gradient in the chemical potential, using the energy available from a chemical reaction. This is called active transport. A well studied example is the Ca2+-transport by means of hydrolysis of adenosine triphoshpate (ATP) at the surface of the Ca2+-ATPase in sarcoplasmic reticulum. The cycle of events is known to be reversible, and has recently also been associated with a characteristic, and also reversible, heat production. We use the case of the Ca2+-ATPase to present and discuss various central theoretical approaches to describe active transport, with focus on two schools of development, namely the kinetic and the thermodynamic schools. Among the kinetic descriptions, Hill’s diagram method gives the most sophisticated description, reducing to the common Post-Albers scheme with simple enzyme kinetic reactions. Among the thermodynamic approaches, we review the now classical approach of Katchalsky and Curran, and its extension to proper pathways by Caplan and Essig, before the most recent development based on mesoscopic theory is outlined. The mesoscopic approach gives a non-linear theory compatible with Hill’s most general method when the active transport is isothermal. We show how the old question of scalar-vector coupling is resolved using rules for non-equilibrium thermodynamics for interfaces. Also thermal driving forces can then be accounted for. Essential physical concepts behind all methods are presented and advantages/deficiencies are pointed out. Emphasis is made on the connection to experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. van Meer, D.R. Voelker, G.W. Feigenson, Nat. Rev. Mol. Cell. Bio. 9, 112 (2008)

    Article  Google Scholar 

  2. J.M. Berg, J.L. Tymoczko, L. Stryer, Biochemistry, 5th edn. (W. H. Freeman and Company, New York, USA, 2002)

  3. J.V. Møller, C. Olesen, A.M.L. Winther, P. Nissen, Q. Rev. Biophys. 43, 501 (2010)

    Article  Google Scholar 

  4. M.Ø. Jensen, V. Jogini, D.W. Borhani, A.E. Leffer, R.O. Dror, D.E. Shaw, Science 336, 229 (2012)

    Article  ADS  Google Scholar 

  5. S. Borman, Chem. Eng. News 90, 7 (2012)

    Google Scholar 

  6. M. Karplus, J.A. McCammon, Nat. Struct. Biol. 9, 646 (2002)

    Article  Google Scholar 

  7. H. Frauenfelder, G. Chen, J. Berendzen, P.W. Fenimore, H. Jansson, B.H. McMahon, I.R. Stroe, J. Swenson, R.D. Young, Proc. Natl. Acad. Sci. USA 106, 5129 (2009)

    Article  ADS  Google Scholar 

  8. W. Kühlbrandt, Nat. Rev. Mol. Cell Bio. 5, 282 (2004)

    Article  Google Scholar 

  9. B.B. Lowell, B.M. Spiegelman, Nature 404, 652 (2000)

    Google Scholar 

  10. L. de Meis, A.P. Arruda, D.P. Carvalho, Bioscience Reports 25, 181 (2005)

    Article  Google Scholar 

  11. A.M. Garcia, C. Miller, J. Gen. Physiol. 83, 819 (1984)

    Article  Google Scholar 

  12. X. Yu, S. Carroll, J.L. Rigaud, G. Inesi, Biophys. J. 64, 1232 (1993)

    Article  Google Scholar 

  13. F. Kamp, P. Donoso, C. Hidalgo, Biophys. J. 74, 290 (1998)

    Article  ADS  Google Scholar 

  14. S. Glasstone, K.J. Laidler, H. Eyring, The Theory of Rate Processes: The Kinetics of Chemical Reactions, Viscosity, Diffusion and Electrochemical Phenomena (McGraw-Hill Book Company, New York, 1941)

  15. H. Eyring, E. Eyring, Modern Chemical Kinetics (Chapman and Hall, London, 1965)

  16. B.J. Zwolinski, H. Eyring, C.E. Reese, J. Phys. Colloid Chem. 53, 1426 (1949)

    Article  Google Scholar 

  17. H.J. Apell, Bioelectrochemistry 63, 149 (2004)

    Article  Google Scholar 

  18. T.L. Hill, Free Energy Transduction and Biochemical Cycle Kinetics (Springer-Verlag, New York, USA, 1989)

  19. T.L. Hill, Free Energy Transduction in Biology: The steady-state kinetic and thermodynamic formalism (Academic Press, New York, USA, 1977)

  20. H. Eyring, S.M. Ma, I. Ueda, Proc. Natl. Acad. Sci. USA 78, 5549 (1981)

    Article  ADS  Google Scholar 

  21. O. Kedem, A. Katchalsky, Biochim. Biophys. Acta. 27, 229 (1958)

    Article  Google Scholar 

  22. O. Kedem, A. Katchalsky, J. Gen. Physiol. 45, 143 (1961)

    Article  Google Scholar 

  23. A. Katchalsky, O. Kedem, Biophys. J. 2, 55 (1962)

    Article  Google Scholar 

  24. A. Katchalsky, P.F. Curran, Nonequilibrium Thermodynamics in Biophysics (Harvard University Press, Cambridge, MA, 1965)

  25. S.R. Caplan, A. Essig, Bioenergetics and linear nonequilibrium thermodynamics. The steady state (Harvard University Press, Cambridge, MA, 1983)

  26. G. Lebon, D. Jou, J. Casas-Vázquez, Understanding Non-equilibrium Thermodynamics (Springer, Heidelberg, 2008)

  27. R. Wittam, M.E. Ager, Biochem. J. 97, 214 (1965)

    Google Scholar 

  28. J.R. Moszynski, T. Hoshiko, B.D. Lindley, Biophys. J. 75, 447 (1963)

    Google Scholar 

  29. S. Kjelstrup, D. Bedeaux, Non-Equilibrium Thermodynamics of Heterogeneous Systems (World Scientific, Singapore, 2008)

  30. K. Sekimoto, Stochastic Energetics, Vol. 799, Lecture Notes in Physics (Springer Verlag, Heidelberg, 2010)

  31. R.W. Albers, Annu. Rev. Biochem. 36, 727 (1967)

    Article  Google Scholar 

  32. R.L. Post, C. Hegyvary, S. Kume, J. Biol. Chem. 247, 6530 (1972)

    Google Scholar 

  33. M.G. Palmgren, P. Nissen, Ann. Rev. Biophys. 40, 243 (2011)

    Article  Google Scholar 

  34. E. Heinz, Mechanics and energetics of biological transport (Springer Verlag, Berlin, 1978), Vol. 29 of Molecular biology, biochemistry, and biophysics

  35. M.C. Berman, BBA-Biomembranes 1513, 95 (2001)

    Article  Google Scholar 

  36. R. Zwanzig, Nonequilibrium statistical mechanics (Oxford University Press, Oxford, 2001)

  37. E.L. King, C. Altman, J. Phys. Chem. 60, 1375 (1956)

    Article  Google Scholar 

  38. T.L. Hill, J. Theor. Biol. 10, 442 (1966)

    Article  Google Scholar 

  39. A. Lervik, D. Bedeaux, S. Kjelstrup, Eur. Biophys. J. 41, 437 (2012)

    Article  Google Scholar 

  40. T.L. Hill, Nature 299, 84 (1982)

    Article  ADS  Google Scholar 

  41. S.R. de Groot, P. Mazur, Non-equilibrium thermodynamics (Dover, New York, 1984)

  42. I. Prigogine, P. Outer, C. Herbo, J. Phys. Chem. 52, 321 (1948)

    Article  Google Scholar 

  43. J. Ross, P. Mazur, J. Chem. Phys. 35, 19 (1961)

    Article  ADS  Google Scholar 

  44. A. Essig, S.R. Caplan, Proc. Natl. Acad. Sci. USA 78, 1647 (1981)

    Article  ADS  Google Scholar 

  45. A.R. Waldeck, K. van Dam, J. Berden, P.W. Kuchel, Eur. Biophys. J. 27, 255 (1998)

    Article  Google Scholar 

  46. G.F. Oster, A.S. Perelson, A. Katchalsky, Q. Rev. Biophys. 6, 1 (1973)

    Article  Google Scholar 

  47. K.C. Soh, V. Hatzimanikatis, Curr. Opin. Microbiol. 13, 350 (2010)

    Article  Google Scholar 

  48. S. Kjelstrup, L. de Meis, D. Bedeaux, J.M. Simon, Eur. Biophys. J. 38, 59 (2008)

    Article  Google Scholar 

  49. D. Bedeaux, S. Kjelstrup, Phys. Chem. Chem. Phys. 10, 7304 (2008)

    Article  Google Scholar 

  50. S. Kjelstrup, D. Barragán, D. Bedeaux, Biophys. J. 96, 4376 (2009)

    Article  ADS  Google Scholar 

  51. P. Mazur, Physica A 274, 491 (1999)

    Article  ADS  Google Scholar 

  52. D. Reguera, J.M. Rubí, J.M.G. Vilar, J. Phys. Chem. B 109, 21502 (2005)

    Article  Google Scholar 

  53. J.M. Rubí, Energy 32, 297 (2007)

    Article  Google Scholar 

  54. J.M. Rubí, S. Kjelstrup, J. Phys. Chem. B 107, 13471 (2003)

    Article  Google Scholar 

  55. J.M. Rubí, D. Bedeaux, S. Kjelstrup, J. Phys. Chem. B 110, 12733 (2006)

    Article  Google Scholar 

  56. J.M. Rubí, M. Naspreda, S. Kjelstrup, D. Bedeaux, J. Non-Equilib. Thermodyn. 32, 351 (2007)

    Article  ADS  MATH  Google Scholar 

  57. S. Kjelstrup, J.M. Rubí, D. Bedeaux, Phys. Chem. Chem. Phys. 7, 4009 (2005)

    Article  Google Scholar 

  58. J.M. Rubí, D. Bedeaux, S. Kjelstrup, J. Phys. Chem. B 111, 9598 (2007)

    Article  Google Scholar 

  59. D. Bedeaux, I. Pagonabarraga, J.M.O. de Zárate, J.V. Sengers, S. Kjelstrup, Phys. Chem. Chem. Phys. 12, 12780 (2010)

    Article  Google Scholar 

  60. I. Pagonabarraga, A. Pèrez-Madrid, J. Rubí, Physica A 237, 205 (1997)

    Article  ADS  Google Scholar 

  61. H.A. Kramers, Physica 7, 284 (1940)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  62. S. Kjelstrup, J.M. Rubí, D. Bedeaux, J. Theor. Biol. 234, 7 (2005)

    Article  Google Scholar 

  63. A. Lervik, F. Bresme, S. Kjelstrup, D. Bedeaux, J.M. Rubí, Phys. Chem. Chem. Phys. 12, 1610 (2010)

    Article  Google Scholar 

  64. C. Peinelt, H.J. Apell, Biophys. J. 86, 815 (2004)

    Article  ADS  Google Scholar 

  65. C. Peinelt, H.J. Apell, Biophys. J. 89, 2427 (2005)

    Article  ADS  Google Scholar 

  66. D.C.F. da Costa, A.M. Landeira-Fernandez, Am. J. Physiol. Regul. Integr. Comp. Physiol. 297, R1460 (2009)

    Article  Google Scholar 

  67. A. Lervik, D. Bedeaux, S. Kjelstrup, Eur. Biophys. J. 42, 321 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. Lervik or S. Kjelstrup.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lervik, A., Kjelstrup, S. Describing transport across complex biological interfaces. Eur. Phys. J. Spec. Top. 222, 143–159 (2013). https://doi.org/10.1140/epjst/e2013-01832-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2013-01832-1

Keywords

Navigation