Skip to main content
Log in

Superspreading mechanisms: An overview

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

An aqueous solution of trisiloxane-ethoxylate surfactants (superspreaders) has fascinating surface properties that promote rapid spreading over hydrophobic substrates and efficiently reduce the surface tension at the air/solution interface to 21–22 mN/m. Superspreaders have a variety of commercial and industrial applications, and can be used as adjuvants, surface modifiers for fabrics, cleaners and much more. Since their discovery in the 1960s, and despite their significant technological applications, the phenomenon that drives superspreading is still not well understood and is under continuous discussion. The goal of the presented review is to discuss and analyze the data presented in the literature and then to elucidate the concepts and mechanisms to explain what drives the fast rate of spreading. Two concepts are presented (and then excluded) for elucidating the understanding of the fast spreading rate over hydrophobic surfaces: the first concept concludes that the spreading is driven by the contact angle dynamics due to the reduction in the surface tension and/or interfacial tension of the solution/substrate leading to a decreased contact angle during spreading and the value of the spreading coefficient S ≥ 0, while the second concept attempts to show that the spreading is driven by the Marangoni flow over a stretching surface of a spreading drop or at the precursor film. However, neither the spreading coefficient, S ≥ 0, nor the Marangoni flow satisfactorily explains why the rate of spreading vs. the degree of surface wettability has a maximum. This review will help readers gain insight on superspreading and stimulate researchers to explore the superspreading phenomenon for novel applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Gentle, S. Snow, Langmuir 11, 2905 (1995)

    Article  Google Scholar 

  2. E. Schwartz, W. Reid, Industrial Engng. Chem. 56, 26 (1994)

    Article  Google Scholar 

  3. W. Harkins, J. Chem. Phys. 9, 552 (1941)

    Article  ADS  Google Scholar 

  4. D. Bangham, R. Razouk, Trans. Faraday Soc. 33, 1459 (1937)

    Article  Google Scholar 

  5. A. Frumkin, Zh. Fiz. Khim. 12, 337 (1938) (in Russian)

    Google Scholar 

  6. B. Derjaguin Zh. Fiz. Khim. 14, 137 (1940) (in Russian)

    Google Scholar 

  7. P. de Gennes, Rev. Mod. Phys. 57, 823 (1985)

    Google Scholar 

  8. C. Huh, L. Scriven, J. Coll. Inter. Sci. 35, 85 (1971)

    Article  Google Scholar 

  9. V. Dussan, Ann. Rev. Fluid Mech. 11, 371 (1979)

    Article  ADS  Google Scholar 

  10. O. Voinov, J. Fluid Mech. 11, 714 (1976)

    Google Scholar 

  11. P. de Gennes, Adv. in Coll. Inter. Sci. 39, 1 (1992)

    Article  Google Scholar 

  12. R. Cox, J. Fluid Mech. 168, 159 (1986)

    ADS  Google Scholar 

  13. T. Blake, J. Haynes, J. Coll. Inter. Sci. 30, 421 (1969)

    Article  Google Scholar 

  14. T. Blake, K. Ruschak, Nature 282, 489 (1979)

    Article  ADS  Google Scholar 

  15. T. Blake, J. Coll. Inter. Sci. 299, 1 (2006)

    Article  Google Scholar 

  16. G. Yarnold, B. Mason, Proc. Phys. Soc. Sect. B 62, 121 (1949)

    Article  ADS  Google Scholar 

  17. F. Brochard, P. de Gennes, Langmuir 8, 3033 (1992)

    Article  Google Scholar 

  18. Y. Shikhmurzaev, J. Multiphase Flow 19, 589 (1993)

    Article  MATH  Google Scholar 

  19. Y. Shikhmurzaev, Fluid Dyn. Res. 13, 45 (1994)

    Article  ADS  Google Scholar 

  20. Y. Shikhmurzaev, Phys. Fluids. 9, 266 (1997)

    Article  ADS  Google Scholar 

  21. Z. Lin, R. Hill, T. Davis, M. Ward, Langmuir 10, 4060 (1994)

    Article  Google Scholar 

  22. X. Zhu, W. Miller, L. Scriven, T. Davis, Colloid Surfaces A 90, 63 (1994)

    Article  Google Scholar 

  23. A. Nikolov, D. Wasan, A. Chengara, K. Koczo, G. Policello, I. Kolossvary, Adv. Coll. Inter. Sci. 96, 325 (2002)

    Article  Google Scholar 

  24. S. Rafai, D. Sarker, V. Bergeron, J. Meunier, D. Bonn, Langmuir 18, 10486 (2002)

    Article  Google Scholar 

  25. R. Hill, Curr. Opinion Coll. Inter. Sci. 3, 247 (1998)

    Article  Google Scholar 

  26. J. Radulovic, K. Sefaine, M. Shanahan, J. Bionic Eng. 6, 341 (2009)

    Article  Google Scholar 

  27. L. Tanner, J. Phys. D: Apply Phys. 12, 1473 (1979)

    Article  ADS  Google Scholar 

  28. K. Ananthapadmanabhan, E. Goddard, P. Chandar, Coll. Surf. 44, 281 (1990)

    Article  Google Scholar 

  29. T. Stoebe, Z. Lin, R. Hill, M. Ward, T. Davis, Langmuir 13, 7270 (1997)

    Article  Google Scholar 

  30. T. Svitova, R. Hill, Yu. Smirnova, A. Stuermer, G. Yakubov, Langmuir 14, 5023 (1998)

    Article  Google Scholar 

  31. J. Halverson, Ch. Maldarelli, A. Couzis, J. Koplik, Chem. Eng. Sci. 64, 4657 (2009)

    Article  Google Scholar 

  32. N. Churaev, N. Esipova, R. Hill, V. Sobolev, V. Starov, Z. Zorin, Langmuir 17, 1338 (2001)

    Article  Google Scholar 

  33. A. Nikolov, D. Wasan, K. Koczo, D. Ploicello, Proceeding of 5th International Symposium on Adjuvants for Agrochemicals Memphis, edited by P. McMullan, Vol. 2 (1998), p. 125

  34. T. Stoebe, Z. Lin, R. Hill M. Ward, T. Davis, Langmuir 12, 337 (1996)

    Article  Google Scholar 

  35. T. Svitova, H. Hoffmann, R. Hill, Langmuir 12, 1712 (1996)

    Article  Google Scholar 

  36. T. Svitova, R. Hill, C. Radke, Langmuir 17, 335 (2001)

    Article  Google Scholar 

  37. A. Kabanov, Langmuir 16, 2595 (2000)

    Article  Google Scholar 

  38. A. Chengara, A. Nikolov, D. Wasan, Coll. Surf. Physicochem. Eng. Aspt. 206, 31 (2002)

    Article  Google Scholar 

  39. A. Chengara, A. Nikolov, D. Wasan, Ind. Eng. Chem. Res. 47, 3639 (2008)

    Article  Google Scholar 

  40. A. Chengara, A. Nikolov, D. Wasan, Adv. Polym. Sci. 218, 117 (2008)

    Google Scholar 

  41. N. Ivanova, V. Starov, R. Rubio, H. Ritacco, N. Hilal, D. Johnson, Coll. Surf. A: Physicochem. Eng. Aspects 354, 143 (2010)

    Article  Google Scholar 

  42. V. Starov, N. Ivanova, R. Rubio, Adv. Coll. Inter. Sci. 161, 153 (2010)

    Article  Google Scholar 

  43. N. Kumar, Ch. Maldarelli, A. Couzis, Coll. Surf. A: Physicochem. Eng. Aspects 277, 98 (2006)

    Article  Google Scholar 

  44. T. Blake, J. Coll. Inter. Sci. 299, 1 (2006)

    Article  Google Scholar 

  45. J. Venzmer, Current opinion in Coll. Inter. Sci. (2011) (in press, available on line on 8 December, 2010)

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. Nikolov or D. Wasan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nikolov, A., Wasan, D. Superspreading mechanisms: An overview. Eur. Phys. J. Spec. Top. 197, 325 (2011). https://doi.org/10.1140/epjst/e2011-01476-1

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjst/e2011-01476-1

Keywords

Navigation