Skip to main content
Log in

On the dynamical investigation and synchronization of variable-order fractional neural networks: the Hopfield-like neural network model

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Since the variable-order fractional systems show more complex characteristics and more degrees of freedom due to time-varying fractional derivatives, we introduce a variable-order fractional Hopfield-like neural network in this paper. First, the properties and dynamical behavior of the system are studied. The variable-order derivative’s effects on the system’s behavior are investigated through the Lyapunov exponents and bifurcation diagram; an emerging Feigenbaum tree of period-4 bubble is observed, which appears with the creation and annihilation of periodic orbits. A general basin of attraction for the fractional-order neural network is presented, demonstrating that its dynamical behaviors are extremely sensitive to initial conditions resulting in different periodic orbits and chaotic attractors’ coexistence. After that, an adaptive control scheme is proposed for the variable-order fractional system. Through Lyapunov theorem and Barbalat’s Lemma, the system’s convergence and stability under the proposed control scheme are proven. The main advantages of the proposed controller are its guaranteed stability, robustness against uncertainties, and simplicity. Finally, the synchronization results are presented. Numerical simulations show the excellent performance of the proposed controller for the variable-order fractional Hopfield-like neural network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M. Van Gerven, S. Bohte, Artificial neural networks as models of neural information processing. Front. Comput. Neurosci. 11, 114 (2017)

    Article  Google Scholar 

  2. H. Jahanshahi, M. Shahriari-Kahkeshi, R. Alcaraz, X. Wang, V.P. Singh, V.-T. Pham, Entropy analysis and neural network-based adaptive control of a non-equilibrium four-dimensional chaotic system with hidden attractors. Entropy 21, 156 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  3. S.-B. Chen, A. Beigi, A. Yousefpour, F. Rajaee, H. Jahanshahi, S. Bekiros et al., Recurrent neural network-based robust nonsingular sliding mode control with input saturation for a non-holonomic spherical robot. IEEE Access. 8, 188441–53 (2020)

    Article  Google Scholar 

  4. P.-Y. Xiong, H. Jahanshahi, R. Alcaraz, Y.-M. Chu, J.F. Gómez-Aguilar, F.E. Alsaadi, Spectral entropy analysis and synchronization of a multi-stable fractional-order chaotic system using a novel neural network-based chattering-free sliding mode technique. Chaos Solitons Fractals 144, 110576 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  5. M. Negassi, R. Suarez-Ibarrola, S. Hein, A. Miernik, A. Reiterer, Application of artificial neural networks for automated analysis of cystoscopic images: a review of the current status and future prospects. World J. Urol. 1–10 (2020)

  6. M.A. Nielsen, Neural Networks and Deep Learning (Determination Press, San Francisco, 2015)

    Google Scholar 

  7. A. Vahidi-Moghaddam, M. Mazouchi, H. Modares, Memory-augmented system identification with finite time convergence. IEEE Control Syst. Lett. 5(2), 571–576 (2021)

    Article  MathSciNet  Google Scholar 

  8. Z. Sabir, M. Asif Zahoor Raja, H. Abdul Wahan, M. Shoaib, J.F. Gómez-Aguilar, Integrated neuro-evolution heuristic with sequencial quadratic programming for second-order prediction differential models. Numer. Methods Partial Differ. Equ. 1–17 (2020)

  9. Y. Guo, Exponential stability analysis of travelling waves solutions for nonlinear delayed cellular neural networks. Dyn. Syst. 32, 490–503 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  10. T. Chen, L. Rong, Delay-independent stability analysis of Cohen–Grossberg neural networks. Phys. Lett. A 317, 436–49 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. U.-P. Wen, K.-M. Lan, H.-S. Shih, A review of Hopfield neural networks for solving mathematical programming problems. Eur. J. Oper. Res. 198, 675–87 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. A. Barra, M. Beccaria, A. Fachechi, A new mechanical approach to handle generalized Hopfield neural networks. Neural Netw. 106, 205–22 (2018)

    Article  MATH  Google Scholar 

  13. Y. Xia, Z. Yang, M. Han, Synchronization schemes for coupled identical Yang–Yang type fuzzy cellular neural networks. Commun. Nonlinear Sci. Numer. Simul. 14, 3645–59 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. H. Jahanshahi, Smooth control of HIV/AIDS infection using a robust adaptive scheme with decoupled sliding mode supervision. Eur. Phys. J. Spec. Top. 227, 707–18 (2018)

    Article  Google Scholar 

  15. H. Jahanshahi, K. Rajagopal, A. Akgul, N.N. Sari, H. Namazi, S. Jafari, Complete analysis and engineering applications of a megastable nonlinear oscillator. Int. J. Non-Linear Mech. 107, 126–36 (2018)

    Article  ADS  Google Scholar 

  16. H. Jahanshahi, A. Yousefpour, J.M. Munoz-Pacheco, I. Moroz, Z. Wei, O. Castillo, A new multi-stable fractional-order four-dimensional system with self-excited and hidden chaotic attractors: dynamic analysis and adaptive synchronization using a novel fuzzy adaptive sliding mode control method. Appl. Soft Comput. 87, 105943 (2020)

    Article  Google Scholar 

  17. S.-B. Chen, H. Jahanshahi, O.A. Abba, J.E. Solís-Pérez, S. Bekiros, J.F. Gómez-Aguilar et al., The effect of market confidence on a financial system from the perspective of fractional calculus: numerical investigation and circuit realization. Chaos Solitons Fractals 140, 110223 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  18. H. Jahanshahi, K. Shanazari, M. Mesrizadeh, S. Soradi-Zeid, J.F. Gómez-Aguilar, Numerical analysis of Galerkin meshless method for parabolic equations of tumor angiogenesis problem. Eur. Phys. J. Plus. 135, 1–23 (2020)

    Article  Google Scholar 

  19. S.-S. Zhou, H. Jahanshahi, Q. Din, S. Bekiros, R. Alcaraz, M.O. Alassafi et al., Discrete-time macroeconomic system: bifurcation analysis and synchronization using fuzzy-based activation feedback control. Chaos Solitons Fractals 142, 110378 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  20. H. Jahanshahi, O. Orozco-López, J.M. Munoz-Pacheco, N.D. Alotaibi, C. Volos, Z. Wang et al., Simulation and experimental validation of a non-equilibrium chaotic system. Chaos Solitons Fractals 143, 110539 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  21. H. Jahanshahi, J.M. Munoz-Pacheco, S. Bekiros, N.D. Alotaibi, A fractional-order SIRD model with time-dependent memory indexes for encompassing the multi-fractional characteristics of the COVID-19. Chaos Solitons Fractals 143, 110632 (2021)

    Article  MATH  Google Scholar 

  22. H. Jahanshahi, S.S. Sajjadi, S. Bekiros, A.A. Aly, On the development of variable-order fractional hyperchaotic economic system with a nonlinear model predictive controller. Chaos Solitons Fractals 144, 110698 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  23. H. Jahanshahi, A. Yousefpour, J.M. Munoz-Pacheco, S. Kacar, V.-T. Pham, F.E. Alsaadi, A new fractional-order hyperchaotic memristor oscillator: dynamic analysis, robust adaptive synchronization, and its application to voice encryption. Appl. Math. Comput. 383, 125310 (2020)

    MathSciNet  MATH  Google Scholar 

  24. H. Jahanshahi, A. Yousefpour, Z. Wei, R. Alcaraz, S. Bekiros, A financial hyperchaotic system with coexisting attractors: dynamic investigation, entropy analysis, control and synchronization. Chaos Solitons Fractals 126, 66–77 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Z. Wei, A. Yousefpour, H. Jahanshahi, U.E. Kocamaz, I. Moroz, Hopf bifurcation and synchronization of a five-dimensional self-exciting homopolar disc dynamo using a new fuzzy disturbance-observer-based terminal sliding mode control. J. Franklin Inst. 358, 814–33 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  26. A. Yousefpour, A. Bahrami, M.R. Haeri Yazdi, Multi-frequency piezomagnetoelastic energy harvesting in the monostable mode. J. Theor. Appl. Vib. Acoust. 4, 1–18 (2018)

    Google Scholar 

  27. M. Mohadeszadeh, N. Pariz, An application of adaptive synchronization of uncertain chaotic system in secure communication systems. Int. J. Model. Simul. 1–10 (2021)

  28. O. Mofid, M. Momeni, S. Mobayen, A. Fekih, A disturbance-observer-based sliding mode control for the robust synchronization of uncertain delayed chaotic systems: application to data security. IEEE Access 9, 16546–55 (2021)

    Article  Google Scholar 

  29. N.H. Sweilam, S.M. Al-Mekhlafi, D.G. Mohamed, Novel chaotic systems with fractional differential operators: numerical approaches. Chaos Solitons Fractals 142, 110475 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  30. F. Yang, X. Wang, Dynamic characteristic of a new fractional-order chaotic system based on the Hopfield neural network and its digital circuit implementation. Phys. Scr. 96, 035218 (2021)

    Article  ADS  Google Scholar 

  31. C. Ma, J. Mou, F. Yang, H. Yan, A fractional-order Hopfield neural network chaotic system and its circuit realization. Eur. Phys. J. Plus 135, 100 (2020)

    Article  ADS  Google Scholar 

  32. Z. Wang, F. Parastesh, K. Rajagopal, I.I. Hamarash, I. Hussain, Delay-induced synchronization in two coupled chaotic memristive Hopfield neural networks. Chaos Solitons Fractals 134, 109702 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  33. J. Sabatier, O.P. Agrawal, J.A.T. Machado, Advances in Fractional Calculus (Springer, Berlin, 2007)

    Book  MATH  Google Scholar 

  34. R. Hilfer, Applications of Fractional Calculus in Physics (World Scientific, Singapore, 2000)

    Book  MATH  Google Scholar 

  35. R. Hilfer, P.L. Butzer, U. Westphal, An introduction to fractional calculus. Appl. Fract. Calc. Phys. 1–85 (2010)

  36. H. Sun, Y. Zhang, D. Baleanu, W. Chen, Y. Chen, A new collection of real world applications of fractional calculus in science and engineering. Commun. Nonlinear Sci. Numer. Simul. 64, 213–31 (2018)

    Article  ADS  MATH  Google Scholar 

  37. S. Soradi-Zeid, H. Jahanshahi, A. Yousefpour, S. Bekiros, King algorithm: a novel optimization approach based on variable-order fractional calculus with application in chaotic financial systems. Chaos Solitons Fractals 132, 109569 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  38. M.A. Platas-Garza, E. Zambrano-Serrano, J.R. Rodríguez-Cruz, C. Posadas-Castillo, Implementation of an encrypted-compressed image wireless transmission scheme based on chaotic fractional-order systems. Chin. J. Phys. 71, 22–37 (2021)

    Article  MathSciNet  Google Scholar 

  39. E. Zambrano-Serrano, J.M. Munoz-Pacheco, L.C. Gómez-Pavón, A. Luis-Ramos, G. Chen, Synchronization in a fractional-order model of pancreatic \(\beta \)-cells. Eur. Phys. J. Spec. Top. 227, 907–919 (2018)

    Article  Google Scholar 

  40. Y.M. Chu, S. Bekiros, E. Zambrano-Serrano, O. Orozco-López, S. Lahmiri, H. Jahanshahi, A.A. Aly, Artificial macro-economics: a chaotic discrete-time fractional-order laboratory model. Chaos Solitons Fractals 145, 110776 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  41. I. Petráš, J. Terpák, Fractional calculus as a simple tool for modeling and analysis of long memory process in industry. Mathematics 7, 511 (2019)

    Article  Google Scholar 

  42. V.E. Tarasov, V.V. Tarasova, Macroeconomic models with long dynamic memory: fractional calculus approach. Appl. Math. Comput. 338, 466–86 (2018)

    MathSciNet  MATH  Google Scholar 

  43. R.T. Baillie, Long memory processes and fractional integration in econometrics. J. Econ. 73, 5–59 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  44. H.-B. Bao, J.-D. Cao, Projective synchronization of fractional-order memristor-based neural networks. Neural Netw. 63, 1–9 (2015)

    Article  MATH  Google Scholar 

  45. F. Wang, Y. Yang, M. Hu, Asymptotic stability of delayed fractional-order neural networks with impulsive effects. Neurocomputing 154, 239–44 (2015)

    Article  Google Scholar 

  46. A. Boroomand, M.B. Menhaj, Fractional-Order Hopfield Neural Networks (Springer, Berlin). pp. 883–890)

  47. P. Arena, L. Fortuna, D. Porto, Chaotic behavior in noninteger-order cellular neural networks. Phys. Rev. E 61, 776 (2000)

    Article  ADS  Google Scholar 

  48. P. Arena, R. Caponetto, L. Fortuna, D. Porto, Bifurcation and chaos in noninteger order cellular neural networks. Int. J. Bifurc. Chaos 8, 1527–39 (1998)

    Article  MATH  Google Scholar 

  49. S. Zhou, X. Lin, H. Li, Chaotic synchronization of a fractional-order system based on washout filter control. Commun. Nonlinear Sci. Numer. Simul. 16, 1533–40 (2011)

    Article  ADS  Google Scholar 

  50. T. Matsuzaki, M. Nakagawa, A chaos neuron model with fractional differential equation. J. Phys. Soc. Jpn. 72, 2678–84 (2003)

    Article  ADS  Google Scholar 

  51. X. Huang, Z. Zhao, Z. Wang, Y. Li, Chaos and hyperchaos in fractional-order cellular neural networks. Neurocomputing 94, 13–21 (2012)

    Article  Google Scholar 

  52. C.J. Zuniga-Aguilar, J.F. Gómez-Aguilar, H.M. Romero-Ugalde, H. Jahanshahi, F.E. Alsaadi, Fractal-fractional neuro-adaptive method for system identification. Eng. Comput. 1–24 (2021)

  53. C.J. Zuniga-Aguilar, J.F. Gómez-Aguilar, V.M. Alvarado-Martínez, H.M. Romero-Ugalde, Fractional order neural networks for system identification. Chaos Solitons Fractals 130, 109444 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  54. B.N. Lundstrom, M.H. Higgs, W.J. Spain, A.L. Fairhall, Fractional differentiation by neocortical pyramidal neurons. Nat. Neurosci. 11, 1335 (2008)

    Article  Google Scholar 

  55. R. Wu, Y. Lu, L. Chen, Finite-time stability of fractional delayed neural networks. Neurocomputing 149, 700–7 (2015)

    Article  Google Scholar 

  56. M.J. Mahmoodabadi, H. Jahanshahi, Multi-objective optimized fuzzy-PID controllers for fourth order nonlinear systems. Eng. Sci. Technol. Int. J. 19, 1084–98 (2016)

    Google Scholar 

  57. A. Kosari, H. Jahanshahi, S.A. Razavi, An optimal fuzzy PID control approach for docking maneuver of two spacecraft: orientational motion. Eng. Sci. Technol. Int. J. 20, 293–309 (2017)

    Google Scholar 

  58. A. Kosari, H. Jahanshahi, S.A. Razavi, Optimal FPID control approach for a docking maneuver of two spacecraft: translational motion. J. Aerosp. Eng. 30, 04017011 (2017)

    Article  Google Scholar 

  59. N.N. Sari, H. Jahanshahi, M. Fakoor, Adaptive fuzzy PID control strategy for spacecraft attitude control. Int. J. Fuzzy Syst. 21, 769–81 (2019)

    Article  MathSciNet  Google Scholar 

  60. S.-B. Chen, F. Rajaee, A. Yousefpour, R. Alcaraz, Y.-M. Chu, J.F. Gómez-Aguilar et al., Antiretroviral therapy of HIV infection using a novel optimal type-2 fuzzy control strategy. Alex. Eng. J. 60, 1545–55 (2021)

    Article  Google Scholar 

  61. M.A. Balootaki, H. Rahmani, H. Moeinkhah, A. Mohammadzadeh, Non-singleton fuzzy control for multi-synchronization of chaotic systems. Appl. Soft Comput. 99, 106924 (2021)

    Article  Google Scholar 

  62. C. Zhang, G. Zhou, J. Wu, Y. Tang, Q. Wen, S. Li et al., Active control of terahertz waves using vanadium-dioxide-embedded metamaterials. Phys. Rev. Appl. 11, 054016 (2019)

    Article  ADS  Google Scholar 

  63. C. Huang, J. Cao, Active control strategy for synchronization and anti-synchronization of a fractional chaotic financial system. Physica A 473, 262–75 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  64. J.M. Munoz-Pacheco, C. Posadas-Castillo, E. Zambrano-Serrano, The effect of a non-local fractional operator in an asymmetrical glucose-insuline regulatory system: analysis synchronization ans electronic implementation. Symmetry 12(9), 1395 (2020)

    Article  Google Scholar 

  65. F.L. Lewis, D. Vrabie, V.L. Syrmos, Optimal Control (Wiley, New York, 2012)

    Book  MATH  Google Scholar 

  66. A. Yousefpour, H. Jahanshahi, S. Bekiros, Optimal policies for control of the novel coronavirus disease (COVID-19) outbreak. Chaos Solitons Fractals 136, 109883 (2020)

    Article  MathSciNet  Google Scholar 

  67. A. Yousefpour, H. Jahanshahi, J.M. Munoz-Pacheco, S. Bekiros, Z. Wei, A fractional-order hyper-chaotic economic system with transient chaos. Chaos Solitons Fractals 130, 109400 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  68. A. Yousefpour, H. Jahanshahi, Fast disturbance-observer-based robust integral terminal sliding mode control of a hyperchaotic memristor oscillator. Eur. Phys. J. Spec. Top. 228, 2247–68 (2019)

    Article  Google Scholar 

  69. A. Yousefpour, A. Vahidi-Moghaddam, A. Rajaei, M. Ayati, Stabilization of nonlinear vibrations of carbon nanotubes using observer-based terminal sliding mode control. Trans. Inst. Meas. Control. 42, 1047–58 (2020)

    Article  Google Scholar 

  70. A. Yousefpour, A. Haji Hosseinloo, M. Reza Hairi Yazdi, A. Bahrami, Disturbance observer-based terminal sliding mode control for effective performance of a nonlinear vibration energy harvester. J. Intell. Mater. Syst. Struct. 31, 1495–510 (2020)

    Article  Google Scholar 

  71. K.J. Åström, B. Wittenmark, Adaptive Control (Courier Corporation, Chelmsford, 2013)

    MATH  Google Scholar 

  72. A. Vahidi-Moghaddam, A. Rajaei, M. Ayati, Disturbance-observer-based fuzzy terminal sliding mode control for MIMO uncertain nonlinear systems. Appl. Math. Model. 70, 109–127 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  73. A. Vahidi-Moghaddam, A. Rajaei, R. Vatankhah, M.R. Hairi-Yazdi, Terminal sliding mode control with non-symmetric input saturation for vibration suppression of electrostatically actuated nanobeams in the presence of casimir force. Appl. Math. Model. 60, 416–434 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  74. A. Vahidi-Moghaddam, A. Rajaei, M. Ayati, R. Vatankhah, M.R. Hairi-Yazdi, Adaptive prescribed-time disturbance observer using nonsingular terminal sliding mode control: extended Kalman filter and particle swarm optimization. IET Control Theory Appl. 14(19), 3301–3311 (2020)

    Article  MathSciNet  Google Scholar 

  75. P. Ioannou, B. Fidan, Adaptive Control Tutorial (SIAM, Philadelphia, 2006)

    Book  MATH  Google Scholar 

  76. G. Tao, Adaptive Control Design and Analysis (Wiley, New York, 2003)

    Book  MATH  Google Scholar 

  77. I.D. Landau, R. Lozano, M. M’Saad, A. Karimi, Adaptive Control: Algorithms, Analysis and Applications (Springer Science and Business Media, Berlin, 2011)

    Book  MATH  Google Scholar 

  78. A.V. Chechkin, R. Gorenflo, I.M. Sokolov, Fractional diffusion in inhomogeneous media. J. Phys. A Math. Gen. 38, L679 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  79. Y.L. Kobelev, L.Y. Kobelev, Y.L. Klimontovich, Statistical Physics of Dynamic Systems with Variable Memory, 6th edn. (Springer, Berlin). pp. 285–289

  80. S.G. Samko, Fractional integration and differentiation of variable order. Anal. Math. 21, 213–36 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  81. S.G. Samko, B. Ross, Integration and differentiation to a variable fractional order. Integral Transform. Spec. Funct. 1, 277–300 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  82. Z. Sabir, M.A. Zahoor Raja, M. Shoaib, J.F. Gómez-Aguilar, FMNEICS: fractional Meyer neuro-evolution-based intelligent computing solver for doubly singular multi-fractional order Lane–Emden system. Comput. Appl. Math. 39, 303 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  83. C.F. Lorenzo, T.T. Hartley, Variable order and distributed order fractional operators. Nonlinear Dyn. 29, 57–98 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  84. H. Sun, W. Chen, H. Sheng, Y. Chen, On mean square displacement behaviors of anomalous diffusions with variable and random orders. Phys. Lett. A 374, 906–10 (2010)

    Article  ADS  MATH  Google Scholar 

  85. C.J. Zuniga-Aguilar, A. Coronel-Escamilla, J.F. Gómez-Aguilar, V.M. Alvarado-Martínez, H.M. Romero-Ugalde, New numerical approximation for solving fractional delay differential equations of variable order using artificial neural networks. Eur. Phys. J. Plus 133, 75 (2018)

    Article  Google Scholar 

  86. C.J. Zuniga-Aguilar, H.M. Romero-Ugalde, J.F. Gómez-Aguilar, R.F. Escobar-Jiménez, M. Valtierra-Rodríguez, Solving fractional differential equations of variable-order involving operators with Mittag–Leffler kernel using artificial neural networks. Chaos Solitons Fractals 103, 382–403 (2017)

  87. C.J. Zuniga-Aguilar, J.F. Gómez-Aguilar, H.M. Romero-Ugalde, R.F. Escobar-Jiménez, G. Fernández-Anaya, F.E. Alsaadi, Numerical solution of fractal-fractional Mittag–Leffler differential equations with variable-order using artificial neural networks. Eng. Comput. 1–14 (2021)

  88. I. Podlubny, Fractional Differential Equations. An Introduction to Fractional Derivatives, Fractional Differential Equations, Some Methods of Their Solution and Some of Their Applications (Academic Press, San Diego, 1999)

    MATH  Google Scholar 

  89. H. Liu, Y. Pan, S. Li, Y. Chen, Synchronization for fractional-order neural networks with full/under-actuation using fractional-order sliding mode control. Int. J. Mach. Learn. Cybern. 9, 1219–32 (2018)

    Article  Google Scholar 

  90. G.-C. Wu, Z.-G. Deng, D. Baleanu, D.-Q. Zeng, New variable-order fractional chaotic systems for fast image encryption. Chaos Interdiscip. J. Nonlinear Sci. 29, 083103 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  91. M. Forti, S. Manetti, M. Marini, Necessary and sufficient condition for absolute stability of neural networks. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 41, 491–4 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  92. J.M. Munoz-Pacheco, E. Zambrano-Serrano, C. Volos, S. Jafari, J. Kengne, K. Rajagopal, A new fractional-order chaotic system with different families of hidden and self-excited attractors. Entropy 20, 564 (2018)

    Article  ADS  Google Scholar 

  93. M.-F. Danca, Hidden chaotic attractors in fractional-order systems. Nonlinear Dyn. 89, 577–86 (2017)

    Article  MathSciNet  Google Scholar 

  94. Y. Li, Y. Chen, I. Podlubny, Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag–Leffler stability. Comput. Math. Appl. 59, 1810–21 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  95. R. Zhang, Y. Liu, A new Barbalat’s lemma and Lyapunov stability theorem for fractional order systems. In: Control and Decision Conference (CCDC), 2017 29th Chinese. IEEE, pp. 3676–3681 (2017)

Download references

Acknowledgements

The research was supported by the Taif University Researchers Supporting Project number (TURSP-2020/77), Taif University, Taif, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jahanshahi, H., Zambrano-Serrano, E., Bekiros, S. et al. On the dynamical investigation and synchronization of variable-order fractional neural networks: the Hopfield-like neural network model. Eur. Phys. J. Spec. Top. 231, 1757–1769 (2022). https://doi.org/10.1140/epjs/s11734-022-00450-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-022-00450-8

Navigation