Skip to main content
Log in

A symmetric oscillator with multi-stability and chaotic dynamics: bifurcations, circuit implementation, and impulsive control

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Finding chaotic oscillators with unique properties is a hot topic. In this paper, a symmetric oscillator with multi-stability is proposed. This oscillator has bounded dynamics for any initial conditions. It is also shown that the oscillator has one unstable equilibrium. This paper studies the dynamical properties of the oscillator, such as chaotic attractors, Lyapunov exponents (LEs), bifurcation diagrams, and the basin of attraction. Its feasibility is shown by circuit implementation. In addition, the stabilization of the system is investigated by impulsive control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S.H. Strogatz, Nonlinear Dynamics and Chaos with Student Solutions Manual: With Applications to Physics, Biology, Chemistry, and Engineering (CRC Press, Boca Raton, 2018)

    Book  Google Scholar 

  2. S. Vaidyanathan, A.T. Azar, K. Rajagopal, A. Sambas, S. Kacar, U. Cavusoglu, A new hyperchaotic temperature fluctuations model, its circuit simulation, FPGA implementation and an application to image encryption. Int. J. Simul. Process Model. 13, 281–296 (2018)

    Article  Google Scholar 

  3. X. Li, J. Mou, L. Xiong, Z. Wang, J. Xu, Fractional-order double-ring erbium-doped fiber laser chaotic system and its application on image encryption. Optic. Laser Technol. 140, 107074 (2021)

    Article  Google Scholar 

  4. H. Hu, Y. Cao, J. Xu, C. Ma, H. Yan, An image compression and encryption algorithm based on the fractional-order simplest chaotic circuit. IEEE Access 9, 22141–22155 (2021)

    Article  Google Scholar 

  5. F. Yu, Z. Zhang, L. Liu, H. Shen, Y. Huang, C. Shi, et al., Secure communication scheme based on a new 5D multistable four-wing memristive hyperchaotic system with disturbance inputs. Complexity 2020, 5859273 (2020)

  6. K. Rajagopal, Y. Shekofteh, F. Nazarimehr, C. Li, and S. Jafari, A new chaotic multi-stable hyperjerk system with various types of attractors. Indian J. Phys. (2021). https://doi.org/10.1007/s12648-021-02075-4

  7. K. Rajagopal, L. Guessas, A. Karthikeyan, A. Srinivasan, and G. Adam, Fractional order memristor no equilibrium chaotic system with its adaptive sliding mode synchronization and genetically optimized fractional order PID synchronization. Complexity 2017, 1892618 (2017)

  8. C. Li, K. Rajagopal, F. Nazarimehr, Y. Liu, A non-autonomous chaotic system with no equilibrium. Integration 79, 143–156 (2021)

    Article  Google Scholar 

  9. J.P. Singh, K. Rajagopal, B.K. Roy, A new 5D hyperchaotic system with stable equilibrium point, transient chaotic behaviour and its fractional-order form. Pramana 91, 1–10 (2018)

    Article  Google Scholar 

  10. N. Sene, Introduction to the fractional-order chaotic system under fractional operator in Caputo sense. Alex. Eng. J. 60, 3997–4014 (2021)

    Article  Google Scholar 

  11. Q. Xu, X. Tan, D. Zhu, H. Bao, Y. Hu, B. Bao, Bifurcations to bursting and spiking in the Chay neuron and their validation in a digital circuit. Chaos Solit Fractals 141, 110353 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  12. C. Li, W. Hu, J.C. Sprott, X. Wang, Multistability in symmetric chaotic systems. Eur. Phys. J. Special Topics 224, 1493–1506 (2015)

    Article  ADS  Google Scholar 

  13. C. Li, J.C. Sprott, H. Xing, Constructing chaotic systems with conditional symmetry. Nonlinear Dyn. 87, 1351–1358 (2017)

    Article  MATH  Google Scholar 

  14. Z. Wei, I. Moroz, J.C. Sprott, Z. Wang, W. Zhang, Detecting hidden chaotic regions and complex dynamics in the self-exciting homopolar disc dynamo. Int. J. Bifurc. Chaos 27, 1730008 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. Z. Wei, I. Moroz, J. Sprott, A. Akgul, W. Zhang, Hidden hyperchaos and electronic circuit application in a 5D self-exciting homopolar disc dynamo. Chaos: Interdisciplin. J. Nonlinear Sci. 27, 033101 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  16. J.C. Sprott, S. Jafari, A.J.M. Khalaf, T. Kapitaniak, Megastability: Coexistence of a countable infinity of nested attractors in a periodically-forced oscillator with spatially-periodic damping. Eur. Phys. J. Special Topics 226, 1979–1985 (2017)

    Article  ADS  Google Scholar 

  17. B. Bao, H. Bao, N. Wang, M. Chen, Q. Xu, Hidden extreme multistability in memristive hyperchaotic system. Chaos Solit. Fractals 94, 102–111 (2017)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  18. B.-C. Bao, Q. Xu, H. Bao, M. Chen, Extreme multistability in a memristive circuit. Electron. Lett. 52, 1008–1010 (2016)

    Article  ADS  Google Scholar 

  19. G. Leonov and N. Kuznetsov, Analytical-numerical methods for investigation of hidden oscillations in nonlinear control systems. IFAC Proc. Volumes (IFAC PapersOnline) 18(Pt. 1), 2494–2505 (2011)

  20. Z. Wei, W. Zhang, Z. Wang, M. Yao, Hidden attractors and dynamical behaviors in an extended Rikitake system. Int. J. Bifurc. Chaos 25, 1550028 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. B.C. Bao, P. Jiang, Q. Xu, M. Chen, Hidden attractors in a practical Chua’s circuit based on a modified Chua’s diode. Electron. Lett. 52, 23–25 (2016)

    Article  ADS  Google Scholar 

  22. Y. Feng, K. Rajagopal, A.J.M. Khalaf, F.E. Alsaadi, F.E. Alsaadi, V.-T. Pham, A new hidden attractor hyperchaotic memristor oscillator with a line of equilibria. Eur. Phys. J. Special Topics 229, 1279–1288 (2020)

    Article  ADS  Google Scholar 

  23. Z. Wei, Dynamical behaviors of a chaotic system with no equilibria. Phys. Lett. A 376, 102–108 (2011)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  24. K. Rajagopal, A. Karthikeyan, A.K. Srinivasan, FPGA implementation of novel fractional-order chaotic systems with two equilibriums and no equilibrium and its adaptive sliding mode synchronization. Nonlinear Dyn. 87, 2281–2304 (2017)

    Article  Google Scholar 

  25. A.J.M. Khalaf, T. Kapitaniak, K. Rajagopal, A. Alsaedi, T. Hayat, V.-T. Pham, A new three-dimensional chaotic flow with one stable equilibrium: dynamical properties and complexity analysis. Open Phys. 16(1), 260–265 (2018)

    Article  Google Scholar 

  26. Z. Wei, Q. Yang, Dynamical analysis of a new autonomous 3-D chaotic system only with stable equilibria. Nonlinear Anal. Real World Appl. 12, 106–118 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. M. Chen, Y. Feng, H. Bao, B. Bao, Y. Yu, H. Wu et al., State variable mapping method for studying initial-dependent dynamics in memristive hyper-jerk system with line equilibrium. Chaos Solit. Fractals 115, 313–324 (2018)

    Article  MathSciNet  ADS  Google Scholar 

  28. Y. Chen, Q. Yang, A new Lorenz-type hyperchaotic system with a curve of equilibria. Math. Comput. Simul. 112, 40–55 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  29. J.C. Sprott, Elegant Chaos: Algebraically Simple Chaotic Flows (World Scientific, Singapore, 2010)

    Book  MATH  Google Scholar 

  30. L. Chunxia, Y. Jie, X. Xiangchun, A. Limin, Q. Yan, F. Yongqing, Research on the multi-scroll chaos generation based on Jerk mode. Procedia Eng. 29, 957–961 (2012)

    Article  Google Scholar 

  31. R.C. Hilborn, Chaos and Nonlinear Dynamics: An Introduction for Scientists and Engineers (Oxford University Press on Demand, Oxford, 2000)

    Book  MATH  Google Scholar 

  32. J.C. Sprott Chaos and Time-Series Analysis (Oxford University Press, Oxford, 2003)

  33. A. Wolf, J.B. Swift, H.L. Swinney, J.A. Vastano, Determining Lyapunov exponents from a time series. Physica D 16, 285–317 (1985)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  34. J.B. Dingwell, Lyapunov exponents, in Wiley encyclopedia of biomedical engineering, (2006)

  35. Q. Lai, Z. Wan, P.D.K. Kuate, H. Fotsin, Coexisting attractors, circuit implementation and synchronization control of a new chaotic system evolved from the simplest memristor chaotic circuit. Commun. Nonlinear Sci. Numer. Simul. 89, 105341 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  36. V. Sundarapandian, I. Pehlivan, Analysis, control, synchronization, and circuit design of a novel chaotic system. Math. Comput. Model. 55, 1904–1915 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  37. C. Pan, Q. Hong, X. Wang, A novel memristive chaotic neuron circuit and its application in chaotic neural networks for associative memory. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 40, 521–532 (2020)

    Article  Google Scholar 

  38. Z. Yuan, H. Li, Y. Miao, W. Hu, X. Zhu, Digital-analog hybrid scheme and its application to chaotic random number generators. Int. J. Bifurc. Chaos 27, 1750210 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  39. Z. Wei, V.-T. Pham, T. Kapitaniak, Z. Wang, Bifurcation analysis and circuit realization for multiple-delayed Wang-Chen system with hidden chaotic attractors. Nonlinear Dyn. 85, 1635–1650 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  40. B. Xu, D. Han, P. Liu, Q. Liu, A. Zhang, S. Ma et al., Enhanced luminescence property of InGaN/GaN nanorod array light emitting diode. Opt. Eng. 58, 045102 (2019)

    Article  ADS  Google Scholar 

  41. M. Hua, H. Wu, Q. Xu, M. Chen, B. Bao, Asymmetric memristive Chua’s chaotic circuits. Int. J. Electron. 108, 1106–1123 (2021)

    Article  Google Scholar 

  42. X. Ren, B. Chen, Q. Xu, et al., Parameter and initial offset boosting dynamics in two-memristor-based Colpitts system. Eur. Phys. J. Spec. Top. 230, 1709–1721 (2021). https://doi.org/10.1140/epjs/s11734-021-00118-9

  43. H. Wu, B. Bao, Z. Liu, Q. Xu, P. Jiang, Chaotic and periodic bursting phenomena in a memristive Wien-bridge oscillator. Nonlinear Dyn. 83, 893–903 (2016)

    Article  MathSciNet  Google Scholar 

  44. Q. Xu, Y. Lin, B. Bao, M. Chen, Multiple attractors in a non-ideal active voltage-controlled memristor based Chua’s circuit. Chaos Solit. Fractals 83, 186–200 (2016)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  45. C. Li, Y. Yang, J. Du, and Z. Chen, A simple chaotic circuit with magnetic flux-controlled memristor. Eur. Phys. J. Special Topics 230, 1–14 (2021)

  46. Q. Jin, F. Min, C. Li, Infinitely many coexisting attractors of a dual memristive Shinriki oscillator and its FPGA digital implementation. Chin. J. Phys. 62, 342–357 (2019)

    Article  MathSciNet  Google Scholar 

  47. M. Jun-hai, R. Biao, C. Yu-shu, Impulsive control of chaotic attractors in nonlinear chaotic systems. Appl. Math. Mech. 25, 971–976 (2004)

    Article  MathSciNet  Google Scholar 

  48. G. X.-P. F. Zheng-Ping ,P. H.-P. W. Yi-Qun, The adaptive control of Chen’s chaotic system [J]. Acta Physica Sinica 11, 2108–2111 (2001)

  49. X. Liu, S. Zhong, T-S fuzzy model-based impulsive control of chaotic systems with exponential decay rate. Phys. Lett. A 370, 260–264 (2007)

    Article  MATH  ADS  Google Scholar 

  50. D. Chen, J. Sun, C. Huang, Impulsive control and synchronization of general chaotic system. Chaos Solit. Fractals 28, 213–218 (2006)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  51. J. Zhou, X. Cheng, L. Xiang, Y. Zhang, Impulsive control and synchronization of chaotic systems consisting of Van der Pol oscillators coupled to linear oscillators. Chaos Solit. Fractals 33, 607–616 (2007)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  52. T. Yang, Impulsive Control Theory, vol. 272 (Springer Science & Business Media, Berlin, 2001)

    MATH  Google Scholar 

  53. Z.G. Li, C.Y. Wen, Y.C. Soh, Analysis and design of impulsive control systems. IEEE Trans. Autom. Control 46, 894–897 (2001)

    Article  MathSciNet  MATH  ADS  Google Scholar 

Download references

Acknowledgements

This work is partially supported by the Natural Science Basic Research Program of Shaanxi (2021JM-533, 2021JQ-880, 2020JM-646), the Innovation Capability Support Program of Shaanxi (2018GHJD-21), the Science and Technology Program of Xi’an (2019218414GXRC020CG021-GXYD20.3), the Support Plan for Sanqin Scholars Innovation Team in Shaanxi Province of China and the Scientific Research Fund for High-Level Talents of Xijing University (XJ21B01). This work is partially funded by Centre for Nonlinear Systems, Chennai Institute of Technology, India vide funding number CIT/CNS/2021/RD/064.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Veeman, D., Zhang, M. et al. A symmetric oscillator with multi-stability and chaotic dynamics: bifurcations, circuit implementation, and impulsive control. Eur. Phys. J. Spec. Top. 231, 2153–2161 (2022). https://doi.org/10.1140/epjs/s11734-021-00371-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-021-00371-y

Navigation