Skip to main content

Advertisement

Log in

Energy harvesting in a delay-induced parametric van der Pol–Duffing oscillator

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Quasi-periodic vibration-based energy harvesting is investigated in a delayed van der Pol–Duffing oscillator coupled to a delayed piezoelectric mechanism. It is assumed that the time delay in the mechanical subsystem is modulated around a mean value with a certain amplitude and frequency. The case of a delay-induced parametric resonance for which the frequency of the modulation is near twice the natural frequency of the oscillator is considered. The first- and second-step multiple scale methods are applied to obtain approximations of periodic and quasi-periodic solutions as well as the corresponding output powers. Bifurcation analysis is carried out to locate regions of existence of these solutions. The effect of different system parameters on the performance of quasi-periodic vibration-based energy harvesting is examined. The advantage of using quasi-periodic vibrations to extract energy over a broadband of system parameters away from the resonance is illustrated. Numerical simulations are conducted to validate the analytical predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. B.P. Mann, N.D. Sims, J. Sound Vib. 319, 515 (2009)

    Article  ADS  Google Scholar 

  2. R. Ramlan, M.J. Brennan, B.R. Mace, I. Kovacic, Nonlinear Dyn. 59, 545 (2010)

    Article  Google Scholar 

  3. S.C. Stanton, C.C. McGehee, B.P. Mann, Appl. Phys. Lett. 95, 174103 (2009)

    Article  ADS  Google Scholar 

  4. M. Daqaq, J. Sound Vib. 330, 2554 (2011)

    Article  ADS  Google Scholar 

  5. A. Erturk, J. Hoffmann, D.J. Inman, Appl. Phys. Lett. 94, 254102 (2009)

    Article  ADS  Google Scholar 

  6. L. Van Blarigan, P. Danzl, J. Moehlis, Appl. Phys. Lett. 100, 253904 (2012)

    Article  ADS  Google Scholar 

  7. Z. Zhou, J. Caoa, D.J. Inman, J. Lin, S. Liu, Z. Wang, Appl. Energy 133, 33 (2014)

    Article  Google Scholar 

  8. P. Kim, J. Seok, Commun. Nonlinear Sci. Numer. Simul. 94, 41 (2015)

    Google Scholar 

  9. D. Huang, S. Zhou, G. Litak, Nonlinear Dyn. 97, 663 (2019)

    Article  Google Scholar 

  10. D.D. Quinn, A.L. Triplett, A.F. Vakakis, L.A. Bergman, J. Vib. Acoust. 133, 011004 (2011)

    Article  Google Scholar 

  11. A. Abdelkefi, A.H. Nayfeh, M.R. Hajj, Nonlinear Dyn. 68, 530 (2012)

    Google Scholar 

  12. A. Bibo, M.F. Daqaq, J. Sound Vib. 332, 5086 (2013)

    Article  ADS  Google Scholar 

  13. I. Kirrou, M. Belhaq, Nonlinear Dyn. 81, 607 (2015)

    Article  Google Scholar 

  14. M. Hamdi, M. Belhaq, J. Vib. Control 24, 5726 (2018)

    Article  MathSciNet  Google Scholar 

  15. M. Belhaq, M. Hamdi, Nonlinear Dyn. 86, 2193 (2016)

    Article  Google Scholar 

  16. Z. Ghouli, M. Hamdi, M. Belhaq, Nonlinear Dyn. 89, 1625 (2017)

    Article  Google Scholar 

  17. Z. Ghouli, M. Hamdi, M. Belhaq, I. Kovacic, S. Lenci (eds) IUTAM Symposium on Exploiting Nonlinear Dynamics for Engineering Systems. ENOLIDES 2018. IUTAM Bookseries, 37, (Springer, Cham, 2020)

  18. T. Kalmar-Nagy, G. Stepan, F.C. Moon, Nonlinear Dyn. 26, 121 (2001)

    Article  Google Scholar 

  19. R. Rusinek, A. Weremczuk, J. Warminski, Mech. Mech. Eng. 15, 129 (2011)

    Google Scholar 

  20. J. Warminski, Nonlinear Dyn. 99, 35 (2020)

    Article  Google Scholar 

  21. A.S. Kammer, N. Olgac, J. Sound Vib. 363, 54 (2016)

    Article  ADS  Google Scholar 

  22. A.H. Nayfeh, D.T. Mook, Nonlinear oscillations (Wiley, New York, 1979)

    MATH  Google Scholar 

  23. M. Belhaq, M. Houssni, Nonlinear Dyn. 18, 1 (1999)

    Article  Google Scholar 

  24. L.F. Shampine, S. Thompson, Solving delay differential equations with dde23. PDF available on-line at http://www.radford.edu/~thompson/webddes/tutorial.pdf (2000)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zakaria Ghouli.

Appendix

Appendix

$$\begin{aligned}&S_{1}=\frac{\delta }{2}-\frac{\chi \kappa (2\beta -2\alpha _{3}\cos (\frac{\omega \tau _{2}}{2}))}{(2\beta -2\alpha _{3}\cos (\frac{\omega \tau _{2}}{2}))^{2}+(\omega +2\alpha _{3}\sin (\frac{\omega \tau _{2}}{2}))^{2}}\\&\qquad -\frac{\alpha _{1}}{\omega }\sin \frac{\omega \tau _{1}}{2},\nonumber \\&\quad S_{2}=\frac{-\lambda }{8}, ~~~~S_{3}=\frac{\alpha _{2}}{2\omega }\sin \frac{\omega \tau _{1}}{2}\\&\quad S_{4}=-\frac{\alpha _{2}}{2\omega }\cos \frac{\omega \tau _{1}}{2},\nonumber \\&\quad S_{5}=\frac{\sigma }{\omega }+\frac{\chi \kappa (\omega +2\alpha _{3}\sin (\frac{\omega \tau _{2}}{2}))}{(2\beta -2\alpha _{3}\cos (\frac{\omega \tau _{2}}{2}))^{2}+(\omega +2\alpha _{3}\sin (\frac{\omega \tau _{2}}{2}))^{2}}\\&\qquad -\frac{\alpha _{1}}{\omega }\cos \frac{\omega \tau _{1}}{2},\nonumber \\&\quad S_{6}=\frac{3\gamma }{4\omega }.\ \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghouli, Z., Belhaq, M. Energy harvesting in a delay-induced parametric van der Pol–Duffing oscillator. Eur. Phys. J. Spec. Top. 230, 3591–3598 (2021). https://doi.org/10.1140/epjs/s11734-021-00243-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-021-00243-5

Navigation