Skip to main content
Log in

Finding quark content of neutron stars in light of GW170817

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

The detection of gravitational waves from GW170817 has provided a new opportunity to constrain the equation of state (EOS) of neutron stars. In this article, we investigate the possible existence of quarks inside the neutron star core in the context of GW170817. The nucleon phase is treated within the relativistic nuclear mean-field approach where we have employed a fully comprehensive set of available models, and the quark phase is described in the Bag model. We show that the nucleonic EOSs which are inconsistent with the tidal deformability bound become consistent when phase transition to quark matter via Gibbs construction is allowed. We find that several nucleonic EOSs support the presence of pure quark matter core with a small mass not more than \(0.17M_\odot \) confined within a radius of 0.9 km. We also find that the strong correlation between tidal deformability and neutron star radii observed for pure nucleonic stars does persist even with a nucleon-quark phase transition and provides an upper limit on the radius of \(R_{1.4} \lesssim 12.9\) km for a \(1.4M_\odot \) neutron star.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. N.K. Glendenning, Compact Stars, Nuclear Physics, Particle Physics, and General Relativity, 2nd edn. (Springer, New York, 2000)

    MATH  Google Scholar 

  2. M. Oertel, M. Hempel, T. Klähn, S. Typel, Rev. Mod. Phys. 89, 015007 (2017)

    Article  ADS  Google Scholar 

  3. J.M. Lattimer, M. Prakash, Phys. Rep. 442, 109 (2007)

    Article  ADS  Google Scholar 

  4. L. Lindblom, Astrophys. J. 398, 569 (1992)

    Article  ADS  Google Scholar 

  5. P. Demorest, T. Pennucci, S. Ransom, M. Roberts, J. Hessels, Nature 467, 1081 (2010)

    Article  ADS  Google Scholar 

  6. E. Fonseca et al., Astrophys. J. 832, 167 (2016)

    Article  ADS  Google Scholar 

  7. J. Antoniadis et al., Science 340, 6131 (2013)

    Article  ADS  Google Scholar 

  8. H.T. Cromartie et al., Nat. Astron. 4(1), 72 (2019)

    Article  ADS  Google Scholar 

  9. S. Guillot, M. Servillat, N.A. Webb, R.E. Rutledge, Astrophys. J. 772, 7 (2013)

    Article  ADS  Google Scholar 

  10. F. Özel, D. Psaltis, T. Guver, G. Baym, C. Heinke, S. Guillot, Astrophys. J. 820(1), 28 (2016)

    Article  ADS  Google Scholar 

  11. F. Özel, P. Freire, Ann. Rev. Astron. Astrophys. 54, 401 (2016)

    Article  ADS  Google Scholar 

  12. J. Nättilä, M. Miller, A. Steiner, J. Kajava, V. Suleimanov, J. Poutanen, Astron. Astrophys. 608, A31 (2017)

  13. T.E. Riley et al., Astrophys. J. Lett. 887, L21 (2019)

    Article  ADS  Google Scholar 

  14. M.C. Miller et al., Astrophys. J. Lett. 887, L24 (2019)

    Article  ADS  Google Scholar 

  15. B.P. Abbott et al. (LIGO Scientific and Virgo Collaborations), Phys. Rev. Lett. 119(16), 161101 (2017)

  16. T. Hinderer, B.D. Lackey, R.N. Lang, J.S. Read, Phys. Rev. D 81, 123016 (2010)

    Article  ADS  Google Scholar 

  17. F.J. Fattoyev, J. Piekarewicz, C.J. Horowitz, Phys. Rev. Lett. 120(17), 172702 (2018)

    Article  ADS  Google Scholar 

  18. E. Annala, T. Gorda, A. Kurkela, A. Vuorinen, Phys. Rev. Lett. 120(17), 172703 (2018)

    Article  ADS  Google Scholar 

  19. E.R. Most, L.R. Weih, L. Rezzolla, J. Schaffner-Bielich, Phys. Rev. Lett. 120(26), 261103 (2018)

    Article  ADS  Google Scholar 

  20. R. Nandi, P. Char, Astrophys. J. 857(1), 12 (2018)

    Article  ADS  Google Scholar 

  21. N.B. Zhang, B.A. Li, J. Xu, Astrophys. J. 859(2), 90 (2018)

    Article  ADS  Google Scholar 

  22. B. Margalit, B.D. Metzger, Astrophys. J. 850, L19 (2017)

    Article  ADS  Google Scholar 

  23. L. Rezzolla, E.R. Most, L.R. Weih, Astrophys. J. Lett. 852, L25 (2018)

    Article  ADS  Google Scholar 

  24. M. Shibata, S. Fujibayashi, K. Hotokezaka, K. Kiuchi, K. Kyutoku, Y. Sekiguchi, M. Tanaka, Phys. Rev. D 96(12), 123012 (2017)

    Article  ADS  Google Scholar 

  25. B.P. Abbott et al. (LIGO Scientific and Virgo Collaborations), Phys. Rev. Lett. 121(16), 161101 (2018)

  26. R. Nandi, P. Char, S. Pal, Phys. Rev. C 99(5), 052802 (2019)

    Article  ADS  Google Scholar 

  27. J.D. Walecka, Ann. Phys. 83, 491 (1974)

    Article  ADS  Google Scholar 

  28. J. Boguta, A.R. Bodmer, Nucl. Phys. A 292, 413 (1977)

    Article  ADS  Google Scholar 

  29. Y. Sugahara, H. Toki, Nucl. Phys. A 579, 557 (1994)

    Article  ADS  Google Scholar 

  30. B.D. Serot, J.D. Walecka, Int. J. Mod. Phys. E 6, 515 (1997)

    Article  ADS  Google Scholar 

  31. C.J. Horowitz, J. Piekarewicz, Phys. Rev. Lett. 86, 5647 (2001)

    Article  ADS  Google Scholar 

  32. S.K. Dhiman, R. Kumar, B.K. Agrawal, Phys. Rev. C 76, 045801 (2007)

    Article  ADS  Google Scholar 

  33. M. Dutra et al., Phys. Rev. C 90(5), 055203 (2014)

    Article  ADS  Google Scholar 

  34. S. Typel, H.H. Wolter, Nucl. Phys. A 656, 331 (1999)

    Article  ADS  Google Scholar 

  35. S. Typel, G. Ropke, T. Klahn, D. Blaschke, H. Wolter, Phys. Rev. C 81, 015803 (2010)

    Article  ADS  Google Scholar 

  36. P. Reinhard, Rep. Prog. Phys. 52, 439 (1989)

    Article  ADS  Google Scholar 

  37. J. Piekarewicz, Phys. Rev. C 69, 041301 (2004)

    Article  ADS  Google Scholar 

  38. S. Shlomo, V.M. Kolomietz, G. Colò, Eur. Phys. J. A 30, 23 (2006)

    Article  ADS  Google Scholar 

  39. S. Weissenborn, I. Sagert, G. Pagliara, M. Hempel, J. Schaffner-Bielich, Astrophys. J. 740, L14 (2011)

    Article  ADS  Google Scholar 

  40. N.K. Glendenning, Phys. Rev. D 46, 1274 (1992)

    Article  ADS  Google Scholar 

  41. T. Hinderer, Astrophys. J. 677, 1216 (2008)

    Article  ADS  Google Scholar 

  42. R. Utama, W. Chen, J. Piekarewicz, J. Phys. G 43(11), 114002 (2016)

    Article  ADS  Google Scholar 

  43. J.K. Bunta, S. Gmuca, Phys. Rev. C 68, 054318 (2003)

    Article  ADS  Google Scholar 

  44. G. Lalazissis, T. Niksic, D. Vretenar, P. Ring, Phys. Rev. C 71, 024312 (2005)

    Article  ADS  Google Scholar 

  45. T. Niksic, D. Vretenar, P. Ring, Phys. Rev. C 66, 064302 (2002)

    Article  ADS  Google Scholar 

  46. S. Typel, Phys. Rev. C 71, 064301 (2005)

    Article  ADS  Google Scholar 

  47. H. Pais, C. Providência, Phys. Rev. C 94(1), 015808 (2016)

    Article  ADS  Google Scholar 

  48. C. Horowitz, J. Piekarewicz, Phys. Rev. C 66, 055803 (2002)

    Article  ADS  Google Scholar 

  49. B. Kumar, B. Agrawal, S. Patra, Phys. Rev. C 97(4), 045806 (2018)

    Article  ADS  Google Scholar 

  50. B. Agrawal, Phys. Rev. C 81, 034323 (2010)

    Article  ADS  Google Scholar 

  51. B. Liu, V. Greco, V. Baran, M. Colonna, M. Di Toro, Phys. Rev. C 65, 045201 (2002)

    Article  ADS  Google Scholar 

  52. B. Biswas, R. Nandi, P. Char, S. Bose, Phys. Rev. D 100(4), 044056 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  53. G. Baym, C. Pethick, P. Sutherland, Astrophys. J. 170, 299–317 (1971)

    Article  ADS  Google Scholar 

  54. M. Fortin, C. Providencia, A. Raduta, F. Gulminelli, J.L. Zdunik, P. Haensel, M. Bejger, Phys. Rev. C 94(3), 035804 (2016)

    Article  ADS  Google Scholar 

  55. I. Tews, J. Margueron, S. Reddy, Eur. Phys. J. A 55(6), 97 (2019)

    Article  ADS  Google Scholar 

  56. S. De, D. Finstad, J.M. Lattimer, D.A. Brown, E. Berger, C.M. Biwer, Phys. Rev. Lett. 121(9), 091102 (2018)

    Article  ADS  Google Scholar 

  57. T. Malik, N. Alam, M. Fortin, C. Providência, B. Agrawal, T. Jha, B. Kumar, S. Patra, Phys. Rev. C 98(3), 035804 (2018)

    Article  ADS  Google Scholar 

  58. A. Akmal, V.R. Pandharipande, D.G. Ravenhall, Phys. Rev. C 58, 1804–1828 (1998)

    Article  ADS  Google Scholar 

  59. F. Douchin, P. Haensel, Astron. Astrophys. 380, 151 (2001)

    Article  ADS  Google Scholar 

  60. L.R. Weih, M. Hanauske, L. Rezzolla, Phys. Rev. Lett. 124(17), 171103 (2020)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rana Nandi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nandi, R., Pal, S. Finding quark content of neutron stars in light of GW170817. Eur. Phys. J. Spec. Top. 230, 551–559 (2021). https://doi.org/10.1140/epjs/s11734-021-00004-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-021-00004-4

Navigation