Skip to main content
Log in

Advanced exact solutions to the nano-ionic currents equation through MTs and the soliton equation containing the RLC transmission line

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this study, the double (G′/G, 1/G)-expansion method is utilized for illustrating the improved explicit integral solutions for the two of nonlinear evolution equations. To expose the importance and convenience of our assumed method, we herein presume two models, namely the nano-ionic currents equation and the soliton equation. The exact solutions are generated with the aid of our proposed method in such a manner that the solutions involve to the rational, trigonometric, and hyperbolic functions for the first presumed nonlinear equation as well as the trigonometric and hyperbolic functions for the second one with meaningful symbols that promote some unique periodic and solitary solutions. The method used here is an extension of the (G′/G)-expansion method to rediscover all known solutions. We offer 2D and 3D charts of the various recovery solutions to better highlight our findings. Finally, we compared our results with those of earlier solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

There are no data associated with the manuscript.

References

  1. I. Siddique, M.M. Jaradat, A. Zafar, K.B. Mehdi, M.S. Osman, Exact traveling wave solutions for two prolific conformable M-Fractional differential equations via three diverse approaches. Results Phys. 28, 104557 (2021)

    Article  Google Scholar 

  2. K.M. Abualnaja, An innovative way to generate Hamiltonian energy of a new hyperchaotic complex nonlinear model and its control. Complexity 1–10, 2020 (2020)

    MATH  Google Scholar 

  3. M.M. Mohamed, A.A. El-Sherif, Complex formation equilibria between zinc (II), nitrilo-tris (methyl phosphonic acid) and some bio-relevant ligands. The kinetics and mechanism for zinc (II) ion promoted hydrolysis of glycine methyl ester. J. Solut. Chem. 39, 639–653 (2010)

    Article  Google Scholar 

  4. M.E. El-Beeh, A.A. El-Badawi, A.H. Amin, S.H. Qari, M.F. Ramadan, W.M. Filfilan, H.I. El-Sayyad, Anti-aging trait of whey protein against brain damage of senile rats. J. Umm Al-Qura Univ. Appl. Sci. 8(1–2), 8–20 (2022)

    Article  Google Scholar 

  5. M. Aljahdali, A.A. El-Sherif, M.M. Shoukry, S.E. Mohamed, Potentiometric and thermodynamic studies of binary and ternary transition metal (II) complexes of imidazole-4-acetic acid and some bio-relevant ligands. J. Solut. Chem. 42, 1028–1050 (2013)

    Article  Google Scholar 

  6. S.W. Yao, M.E. Islam, M.A. Akbar, M. Inc, M. Adel, M.S. Osman, Analysis of parametric effects in the wave profile of the variant Boussinesq equation through two analytical approaches. Open Phys. 20(1), 778–794 (2022)

    Article  Google Scholar 

  7. S. Bibi, N. Ahmed, U. Khan, S.T. Mohyud-Din, Auxiliary equation method for ill-posed Boussinesq equation. Phys. Scr. 94, 8 (2019)

    Article  Google Scholar 

  8. S. Liu, Z. Fu, S. Liu, Q. Zhao, Jacobi elliptic expansion method and periodic wave solutions of nonlinear wave equations. Phys. Lett. A 289, 69–74 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. S.M.M. Alizamini, H. Rezazadeh, M. Eslami, M. Mirzazadeh, A. Korkmaz, New extended direct algebraic method for the Tzitzicatype evolution equations arising in nonlinear optics. Comput. Methods Differ. Equ. 8, 28–53 (2020)

    MathSciNet  MATH  Google Scholar 

  10. M.A. Akbar, N.H.M. Ali, The improved F-expansion method with Riccati equation and its applications in mathematical physics. Congent Math. (2017). https://doi.org/10.1080/23311835.2017.1282577

    Article  MATH  Google Scholar 

  11. M.S. Islam, K. Khan, M.A. Akbar, Application of the improved F-expansion method with Riccati equation to find the exact solution of the nonlinear evolution equations. J. Egypt. Math. Soc. 25, 13–18 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  12. E.H.M. ZahranandM, M.A. Khater, Extended Jacobian elliptic function expansion method and its applications in biology. Appl. Math. 6, 1174–1181 (2015)

    Article  Google Scholar 

  13. C. Park, R.I. Nuruddeen, K.K. Ali, L. Muhammad, M.S. Osman, D. Baleanu, Novel hyperbolic and exponential ansatz methods to the fractional fifth-order Korteweg–de Vries equations. Adv. Difference Equ. 2020(1), 627 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  14. K.S. Nisar, O.A. Ilhan, S.T. Abdulazeez, J. Manafian, S.A. Mohammed, M.S. Osman, Novel multiple soliton solutions for some nonlinear PDEs via multiple Exp-function method. Results Phys. 21, 103769 (2021)

    Article  Google Scholar 

  15. H.M.S. Ali, M.A. Habib, M.M. Miah, M.A. Akbar, A modification of the generalized Kudryshov method for the system of some nonlinear evolution equations. J. Mech. Cont. Math. Sci. 14, 91–109 (2019)

    Google Scholar 

  16. F. Mahmud, M. Samsuzzoha, M.A. Akbar, The generalized Kudryashov method to obtain exact traveling wave solutions of the PHI-four equation and the Fisher equation. Results Phys. 7, 4296–4302 (2017)

    Article  ADS  Google Scholar 

  17. H. Jafari, N. Kadkhoda, D. Baleanu, Fractional Lie group method of the time-fractional Boussinesq equation. Nonlinear Dyn. 81, 1569–1574 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. C. Yue, D. Lu, M.M.A. Khater, M.H. Abdel-Aty, W. Alharbi, R.A.M. Attia, On explicit wave solutions of the fractional nonlinear DSW system via the modified Khater method. Fractals (2020). https://doi.org/10.1142/S0218348X20400344)

    Article  MATH  Google Scholar 

  19. Y. Chu, S. Rashid, K.T. Kubra, Z. Hammouch, M. Inc, M.S. Osman, Analysis and numerical computations of the multi-dimensional, time-fractional model of Navier–Stokes equation with a new integral transformation. CMES Comput. Model. Eng. Sci. 136(3), 3025–3060 (2023)

    Google Scholar 

  20. H. Rezazadeh, J. Manafian, S. Khodadad, F. Nazari, Traveling wave solutions for density-dependent conformable fractional diffusion-reaction equation by the first integral method and the improved tan (ϕ(ξ)/2)–expansion method. Phys. Lett. Opt. Quantum Electron. 50, 121 (2018)

    Article  Google Scholar 

  21. E.M.E. Zayed, Y.A. Amer, The first integral method and its application for deriving the exact solutions of a higher-order dispersive cubic-quintic nonlinear Schrodinger equation. Comput. Math. Model. 27, 80–94 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  22. J.G. Liu, M. Eslami, H. Rezazadeh, M. Mirzazadeh, Rational solutions and lump solutions to a non-isospectraland generalized variable-coefficient Kadomtsev–Petviashvili equation. Nonlinear Dyn. 95, 1027–1033 (2019)

    Article  MATH  Google Scholar 

  23. A.M. Wazwaz, The Hirota’s bilinear method and the tanh–coth method for multiple-soliton solutions of the Sawada–Koreta–Kadomstsev–Petviashvili equation. Appl. Math. Comput. 200, 160–166 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. A. Saied, R.G.A.E. Rahman, M.I. Ghonamy, A generalized Weierstrass elliptic function expansion method for solving some nonlinear partial differential equations. Comput. Math. Appl. 58, 1725–1735 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. A. Tripathy, S. Sahoo, H. Rezazadeh, Z.P. Izgi, M.S. Osman, Dynamics of damped and undamped wave natures in ferromagnetic materials. Optik 281, 170817 (2023)

    Article  ADS  Google Scholar 

  26. C. Cheng, Y.L. Jiang, Lie group analysis method for two classes of fractional partial differential equations. Commun. Nonlinear Sci. Numer. Simul. 26, 24–35 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. A. Korkmaz, O.E. Hepson, K. Hosseini, H. Rezazadeh, M. Eslami, Sine-Gordon expansion method for exact solutionsto conformable time fractional equations in RLW-class. J. King Saud Univ. Sci. 32, 567–574 (2020)

    Article  Google Scholar 

  28. D. Kumar, K. Hosseini, F. Samadani, The sine-Gordon expansion method to look for the traveling wave solutions of the Tzitzeica type equations in nonlinear optics. Optik 149, 439–446 (2017)

    Article  ADS  Google Scholar 

  29. M.A. Fiddy, M. Testorf, Inverse scattering method applied to the synthesis of strongly scatering structures. Opt. Express 14, 2037–2046 (2006)

    Article  ADS  Google Scholar 

  30. F. Batool, G. Akram, Application of extended Fan sub-equation method to (1+1)-dimensional nonlinear dispersive modified Benjamin–Bona–Mahony equation with fractional evolution. Opt. Quant. Electron. 49, 375 (2017)

    Article  Google Scholar 

  31. F.A. Abdullah, M.T. Islam, J.F. Gómez-Aguilar, M.A. Akbar, Impressive and innovative soliton shapes for nonlinear Konno–Oono system relating to electromagnetic field. Opt. Quant. Electron. 55(1), 69 (2023)

    Article  Google Scholar 

  32. M.T. Islam, M.A. Akter, J.F. Gómez-Aguilar, M.A. Akbar, J. Torres-Jiménez, A novel study of the nonlinear Kadomtsev–Petviashvili-modified equal width equation describing the behavior of solitons. Opt. Quant. Electron. 54(11), 725 (2022)

    Article  Google Scholar 

  33. S. Guo, Y. Zhou, C. Zhao, The improved (/)-expansion method and its applications to the Broer–Kaup equations and approximate long water equations. Appl. Math. Comput. 216, 1965–1971 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  34. M.T. Islam, F.A. Abdullah, J.F. Gómez-Aguilar, A variety of solitons and other wave solutions of a nonlinear Schrödinger model relating to ultra-short pulses in optical fibers. Opt. Quant. Electron. 54(12), 866 (2022)

    Article  Google Scholar 

  35. B. Ayhan, A. Bekir, The (/)-expansion method for the nonlinear lattice equations. Commun. Nonlinear Sci. Numer. Simul. 17, 3490–3498 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. M.T. Islam, M.A. Akter, J.F. Gomez-Aguilar, M.A. Akbar, E. Perez-Careta, Innovative and diverse soliton solutions of the dual core optical fiber nonlinear models via two competent techniques. J. Nonlinear Opt. Phys. Mater. (2023). https://doi.org/10.1142/S0218863523500376

    Article  Google Scholar 

  37. N. Raza, N. Jannat, J.F. Gómez-Aguilar, E. Pérez-Careta, New computational optical solitons for generalized complex Ginzburg–Landau equation by collective variables. Modern Phys Lett B 36(28n29), 2250152 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  38. M.A. Iqbal, D. Baleanu, M.M. Miah, H.S. Ali, H.M. Alshehri, M.S. Osman, New soliton solutions of the mZK equation and the Gerdjikov–Ivanov equation by employing the double (G′/G, 1/G)-expansion method. Results Phys. 47, 106391 (2023)

    Article  Google Scholar 

  39. M.M. Miah, A.R. Seadawy, H.M.S. Ali, M.A. Akbar, Further investigations to extract abundant new exact traveling wave solutions of some NLEEs. J. Ocean Eng. Sci. 4, 387–394 (2019)

    Article  Google Scholar 

  40. M.M. Miah, H.M.S. Ali, M.A. Akbar, A.M. Wazwaz, Some applications of the (/, 1/)-expansion method to find new exact solutions of NLEEs. Eur. Phys. J. Plus 132, 252 (2017)

    Article  Google Scholar 

  41. M.A. Chowdhury, M.M. Miah, H.M.S. Ali, Y.M. Chu, M.S. Osman, An investigation to the nonlinear (2+1)-dimensional soliton equation for discovering explicit and periodic wave solutions. Results Phys. 23, 104013 (2021)

    Article  Google Scholar 

  42. M.V. Sataric, D. Sekulic, M. Zivanov, Solitonic ionic currents along microtubes. J. Comput. Theor. Nano Sci. 7, 2281–2290 (2010)

    Article  Google Scholar 

  43. N. Aljahdaly, A.F. Alyoubi, A.R. Seadawy, Solitary wave solutions of the ionic currents along microtubule dynamical equations via analytical mathematical method. Open Phys. 19, 494–503 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant Code: (23UQU4410172DSR002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dumitru Baleanu or M. S. Osman.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chowdhury, M.A., Miah, M.M., Iqbal, M.A. et al. Advanced exact solutions to the nano-ionic currents equation through MTs and the soliton equation containing the RLC transmission line. Eur. Phys. J. Plus 138, 502 (2023). https://doi.org/10.1140/epjp/s13360-023-04105-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04105-y

Navigation