Skip to main content
Log in

A visually secure image encryption scheme based on compressed sensing and Chebyshev-dynamics coupled map lattices in cloud environment

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this paper, a new spatiotemporal chaotic system based on Chebyshev-dynamically coupled map lattice (CDCML) is proposed. Various performance tests show that the CDCML spatiotemporal chaos system has good cryptographic characteristics and is suitable for image encryption and secure communication. With the development of cloud computing services, it is becoming increasingly common to use cloud servers to store private image information. How to protect the secure transmission and storage of images on cloud platforms is crucial. Therefore, in order to solve the problem of unauthorized access to images stored in the cloud, this paper proposes a visual security image encryption scheme combined with compressed sensing and LSB embedding in the cloud environment with the help of a new spatiotemporal chaotic system. First, Arnold algorithm is used to scramble the sparse plaintext image on the local client, and then, compressed sensing is used to compress it to obtain the secret image. Upload the ciphertext image to the cloud and perform secondary encryption on the cloud. By embedding ciphertext images into carrier images to obtain visually meaningful steganographic images, the visual security of the images is ensured. By analyzing the simulation performance of the encryption scheme, it can be determined that the algorithm has high security, good statistical performance, and good robustness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: The data that support the findings of this study are available from the corresponding author [Lin Teng], upon reasonable request.].

References

  1. M. Alawida, A. Samsudin, J. Sen Teh, R.S. Alkhawaldeh, A new hybrid digital chaotic system with applications in image encryption. Signal Process. 160, 45–58 (2019)

    Article  Google Scholar 

  2. X.Y. Wang, S. Gao, Image encryption algorithm for synchronously updating Boolean networks based on matrix semi-tensor product theory. Inf. Sci. 507, 16–36 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  3. Z.Y. Hua, Y.C. Zhou, H.J. Huang, Cosine-transform-based chaotic system for image encryption. Inf. Sci. 480, 403–419 (2019)

    Article  Google Scholar 

  4. X.Y. Wang, N.N. Guan, H.Y. Zhao, S.W. Wang, Y.Q. Zhang, A new image encryption scheme based on coupling map lattices with mixed multi-chaos. Sci. Rep. 10, 9784 (2020)

    Article  ADS  Google Scholar 

  5. L. Xu, Z. Li, J. Li, W. Hua, A novel bit-level image encryption algorithm based on chaotic maps. Opt. Lasers Eng. 78, 17–25 (2016)

    Article  Google Scholar 

  6. M. Chen, Accounting data encryption processing based on data encryption standard algorithm. Complexity 7212688, 1–12 (2021)

    ADS  Google Scholar 

  7. T.M. Kumar, K.S. Reddy, S. Rinaldi et al., A low area high speed FPGA implementation of AES architecture for cryptography application. Electronics 10(16), 1–22 (2021)

    Article  Google Scholar 

  8. S.M. Ismail, L.A. Said, A.G. Radwan, A.H. Madian, M.F. Abu-Elyazeed, Generalized double-humped logistic map-based medical image encryption. J. Adv. Res. 10, 85–98 (2018)

    Article  Google Scholar 

  9. A. Bakhshandeh, Z. Eslami, An authenticated image encryption scheme based on chaotic maps and memory cellular automata. Opt. Lasers Eng. 51(6), 665–673 (2013)

    Article  Google Scholar 

  10. E.G. Nepomuceno, A.M. Lima, J. Arias-García, M. Perc, R. Repnik, Minimal digital chaotic system. Chaos, Solitons Fractals 120, 62–66 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. J. Chen, Z. Zhu, L. Zhang, Y. Zhang, B. Yang, Exploiting self-adaptive permutation-diffusion and DNA random encoding for secure and efficient image encryption. Signal Process. 142, 40–353 (2018)

    Article  Google Scholar 

  12. X.Y. Wang, S. Gao, Image encryption algorithm based on the matrix semi-tensor product with a compound secret key produced by a Boolean network. Inf. Sci. 539, 195–214 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  13. X.Y. Wang, L. Feng, H.Y. Zhao, Fast image encryption algorithm based on parallel computing system. Inf. Sci. 486, 340–358 (2019)

    Article  MATH  Google Scholar 

  14. Y.J. Xian, X.Y. Wang, Fractal sorting matrix and its application on chaotic image encryption. Inf. Sci. 547, 1154–1169 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  15. X. Li, D. Xiao, Q. Wang, Error-free holographic frames encryption with CA pixel-permutation encoding algorithm. Opt. Lasers Eng. 100, 200–207 (2018)

    Article  Google Scholar 

  16. Ting T. Research on intelligent image scrambling transform encryption algorithm based on big data analysis, in 2021 International Conference on Intelligent Transportation, Big Data & Smart City (ICITBS) (IEEE, 2021), pp. 720–723

  17. J. Fridrich, Symmetric ciphers based on two-dimensional chaotic maps. Int. J. Bifurc. Chaos 8(06), 1259–1284 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  18. D. Zhang, X. Liao, B. Yang, Y. Zhang, A fast and efficient approach to color-image encryption based on compressive sensing and fractional Fourier transform. Multimedia Tools Appl. 77(2), 2191–2208 (2017)

    Article  Google Scholar 

  19. N.R. Zhou, H.L. Li, D. Wang, S.M. Pan, Z.H. Zhou, Image compression and encryption scheme based on 2D compressive sensing and fractional Mellin transform. Opt. Commun. 343, 10–21 (2015)

    Article  ADS  Google Scholar 

  20. D. Xiao, L. Wang, T. Xiang, Y. Wang, Multi-focus image fusion and robust encryption algorithm based on compressive sensing. Opt. Laser Technol. 91, 212–225 (2017)

    Article  ADS  Google Scholar 

  21. L.H. Gong, K.D. Qiu, C.Z. Deng, N.R. Zhou, An image compression and encryption algorithm based on chaotic system and compressive sensing. Opt. Laser Technol. 115, 257–267 (2019)

    Article  ADS  Google Scholar 

  22. X.Y. Wang, H.H. Sun, A chaotic image encryption algorithm based on improved Joseph traversal and cyclic shift function. Opt. Laser Technol. 122, 105854 (2020)

    Article  Google Scholar 

  23. X.Y. Wang, J.J. Yang, A privacy image encryption algorithm based on piecewise coupled map lattice with multi dynamic coupling coefficient. Inf. Sci. 569, 217–240 (2021)

    Article  MathSciNet  Google Scholar 

  24. M. Wang, X. Wang, T. Zhao, C. Zhang, Z. Xia, N. Yao, Spatiotemporal chaos in improved cross coupled map lattice and its application in a bit-level image encryption scheme—ScienceDirect. Inf. Sci. 544, 1–24 (2021)

    Article  ADS  MATH  Google Scholar 

  25. T.L. Shu, G. Chen, Nonlinear feedback-controlled generalized synchronization of spatial chaos. Chaos, Solitons Fractals 22(1), 35–46 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. K. Kaneko, Pattern dynamics in spatiotemporal chaos: pattern selection, diffusion of defect and pattern competition intermettency. Physica D 34(1–2), 1–41 (1989)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. S. Sinha, Random coupling of chaotic maps leads to spatiotemporal synchronization. Phys. Rev. E 66(1), 16209–16209 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  28. F. Khellat, A. Ghaderi, N. Vasegh, Li–Yorke chaos and synchronous chaos in a globally nonlocal coupled map lattice. Chaos, Solitons Fractals 44(11), 934–939 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. S. Meherzi, S. Marcos, S. Belghith, A new spatiotemporal chaotic system with advantageous synchronization and unpredictability features[C]. Proc. Nolta. 147–150 (2006)

  30. L. Bao, Y. Zhou, Image encryption: generating visually meaningful encrypted images. Inf. Sci. 324, 197–207 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  31. X.L. Chai, Z.H. Gan, Y.R. Chen, Y.S. Zhang, A visually secure image encryption scheme based on compressive sensing. Signal Process. 134, 35–51 (2016)

    Article  Google Scholar 

  32. S. Zheng, X.P. Zhang, J. Chen, Y.H. Kou, A high-efficiency compressed sensing based terminal-to-cloud video transmission system. IEEE Trans. Multimedia 21(8), 1905–1920 (2019)

    Article  Google Scholar 

  33. L.E. Bautista-Villalpando, A. Abran, A data security framework for cloud computing services. Comput. Syst. Sci. Eng. 37(2), 203–218 (2021)

    Article  Google Scholar 

  34. Y.H. Zhang, R.H. Deng, X.M. Liu, D. Zheng, Blockchain based efficient and robust fair payment for outsourcing services in cloud computing. Inf. Sci. 462, 262–277 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  35. X. Ma, F.G. Zhang, X.F. Chen, J. Shen, Privacy preserving multi-party computation delegation for deep learning in cloud computing. Inf. Sci. 459, 103–116 (2018)

    Article  MATH  Google Scholar 

  36. A. Wolf, J.B. Swift, H.L. Swinney, J.A. Vastano, Determining Lyapunov exponents from a time series. Nonlinear Phenom 16(3), 285–317 (1985)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. E.J. Candes, J. Romberg, T. Tao, Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52(2), 489–509 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  38. D.L. Donoho, Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  39. H. Huang, S. Yang, R. Ye, Image encryption scheme combining a modified Gerchberg–Saxton algorithm with hyper-chaotic system. Soft. Comput. 23(16), 7045–7053 (2019)

    Article  Google Scholar 

  40. Y.L. Luo, J. Lin, J.X. Liu, D.Q. Wei, L.C. Cao, R.L. Zhou, Y. Cao, X.M. Ding, A robust image encryption algorithm based on Chua’s circuit and compressive sensing. Signal Process 161, 227–247 (2019)

    Article  Google Scholar 

  41. Q.Y. Xu, K.H. Sun, C. Cao, C.X. Zhu, A fast image encryption algorithm based on compressive sensing and hyperchaotic map. Opt. Lasers Eng. 121, 203–214 (2019)

    Article  Google Scholar 

  42. W.H. Liu, K.H. Sun, C.X. Zhu, A fast image encryption algorithm based on chaotic map. Opt. Lasers Eng. 84, 26–36 (2016)

    Article  Google Scholar 

  43. A.N.K. Telem, H.B. Fotsin, J. Kengne, Image encryption algorithm based on dynamic DNA coding operations and 3D chaotic systems. Multimedia Tools Appl. 80, 19011–19041 (2021)

    Article  Google Scholar 

  44. Z.H. Gan, X.Y. Chai, J.T. Zhang, Y.S. Zhang, Y.R. Chen, An effective image compression-encryption scheme based on compressive sensing (CS) and game of life (GOL). Neural Comput. Appl. 32(17), 14113–14141 (2020)

    Article  Google Scholar 

  45. J.X. Chen, Y. Zhang, L. Qi, C. Fu, L.S. Xu, Exploiting chaos-based compressed sensing and cryptographic algorithm for image encryption and compression. Opt. Laser Technol. 99, 238–248 (2017)

    Article  ADS  Google Scholar 

  46. H.J. Fan, K.L. Zhou, E. Zhang, W.Y. Wen, Subdata image encryption scheme based on compressive sensing and vector quantization. Neural Computing & Application 32(16), 12771–12787 (2020)

    Article  Google Scholar 

  47. A. Babaei, H. Motameni, R. Enayatifar, A new permutation-diffusion-based image encryption technique using cellular automata and DNA sequence. Optik 203, 164000 (2020)

    Article  ADS  Google Scholar 

  48. A. Belazi, A.A.A. El-Latif, S. Belghith, A novel image encryption scheme based on substitution-permutation network and chaos. Signal Process 128, 155–170 (2016)

    Article  Google Scholar 

  49. L.Y. Zhu, D.H. Jiang, J.Q. Ni et al., A stable meaningful image encryption scheme using the newly-designed 2D discrete fractional-order chaotic map and Bayesian compressive sensing. Signal Process. 195, 108489 (2022)

    Article  Google Scholar 

  50. L.Y. Zhu, H.S. Song, X. Zhang et al., A robust meaningful image encryption scheme based on block compressive sensing and SVD embedding. Signal Process. 175, 107629 (2020)

    Article  Google Scholar 

  51. D.H. Jiang, L.D. Liu, L.Y. Zhu et al., Adaptive embedding: a novel meaningful image encryption scheme based on parallel compressive sensing and slant transform. Signal Process. 188, 108220 (2021)

    Article  Google Scholar 

  52. X.L. Chai, H.Y. Wu, Z.H. Gan et al., An efficient visually meaningful image compression and encryption scheme based on compressive sensing and dynamic LSB embedding. Opt. Lasers Eng. 124, 105837 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Nos: 61701070), China Postdoctoral Science Foundation (No: 2020M680933), the Doctoral Start-up Foundation of Liaoning Province (No: 2018540090).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Teng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, Q., Teng, L., Wang, X. et al. A visually secure image encryption scheme based on compressed sensing and Chebyshev-dynamics coupled map lattices in cloud environment. Eur. Phys. J. Plus 138, 436 (2023). https://doi.org/10.1140/epjp/s13360-023-04078-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04078-y

Navigation