Skip to main content

Advertisement

Log in

A mobile instrument for joint X-ray fluorescence and diffraction measurements on complex-shape Cultural Heritage objects

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We present the performances of a new mobile instrument allowing X-ray powder diffraction (XRPD) and fluorescence (XRF) measurements at the same point in reflection geometry. These two complementary techniques allow the identification of the chemical elements and crystalline phases without disrupting the Cultural Heritage (CH) objects’ integrity. Moreover, the joint use of a linear and 2D detector for XRPD allows to gain insight into the microstructure of the analyzed phases. After the description of the instrument, we report two examples of applications on CH objects with complex, non-planar shapes. First, we present the analysis of an unusual metallic cover found around the neck of a buried abbot recently discovered in the Saint-Médard-de-Soissons abbey (13th century). The complex-shape cover is made of several lead foils with areas showing evidences of soldered joints. 2D XRPD investigations revealed the surface carbonatation of the lead foils and two different microstructures of lead carbonate between the foils and the soldered joints with a brazing filler material made of Pb–Sn. In addition, we present the investigations of five late medieval polychrome sculptures with sophisticate relief decoration so-called “applied-brocade.” The instrument allowed to detect/confirm the presence of these multilayered decorations, to identify the associated phases and the main variations in stratigraphy between statues. These results show the benefits of the combined use of XRPD (1D-2D) and XRF and the importance of well-designed degrees of freedom of the instrument for in situ measurements of complex-shape objects.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The manuscript has data included as electronic supplementary material. [Authors’ comment: The authors confirm that the data supporting the findings of this study are available within the article and its Supplementary material. Raw data that support the findings of this study are available from the corresponding author, upon reasonable request.]

References

  1. P. Moioli, C. Seccaroni, Analysis of art objects using a portable x-ray fluorescence spectrometer. X-Ray Spectrom. 29(1), 48–52 (2000). https://doi.org/10.1002/(SICI)1097-4539(200001/02)29:1<48::AID-XRS404>3.0.CO;2-H

    Article  ADS  Google Scholar 

  2. P. Ricciardi, UV-visible-NIR reflectance spectrophotometry in cultural heritage: background paper. Anal. Methods 8(30), 5894–5896 (2016). https://doi.org/10.1039/C6AY90112C

    Article  Google Scholar 

  3. P. Colomban, The on-site/remote Raman analysis with mobile instruments: a review of drawbacks and success in cultural heritage studies and other associated fields. J. Raman Spectrosc. 43(11), 1529–1535 (2012). https://doi.org/10.1002/jrs.4042

    Article  ADS  Google Scholar 

  4. A.N. Shugar, Portable x-ray fluorescence and archaeology: limitations of the instrument and suggested methods to achieve desired results, in Archaeological Chemistry VIII. ACS Symposium Series. ed. by R.A. Armitage, J.H. Burton (American Chemical Society, Washington, 2013), pp.173–193. https://doi.org/10.1021/bk-2013-1147.ch010

    Chapter  Google Scholar 

  5. L. De Viguerie, V. Solé, P. Walter, Multilayers quantitative X-ray fluorescence analysis applied to easel paintings. Anal. Bioanal. Chem. 395, 2015–20 (2009). https://doi.org/10.1007/s00216-009-2997-0

    Article  Google Scholar 

  6. I. Nakai, Y. Abe, Portable X-ray powder diffractometer for the analysis of art and archaeological materials. Appl. Phys. A 106, 279–293 (2011). https://doi.org/10.1007/s00339-011-6694-4

    Article  ADS  Google Scholar 

  7. A.H. Treiman, D.L. Bish, D.T. Vaniman, S.J. Chipera, D.F. Blake, D.W. Ming, R.V. Morris, T.F. Bristow, S.M. Morrison, M.B. Baker, Mineralogy, provenance, and diagenesis of a potassic basaltic sandstone on Mars: CheMin x-ray diffraction of the Windjana sample (Kimberley area, Gale Crater). J. Geophys. Res. Planets 121(1), 75–106 (2016). https://doi.org/10.1002/2015JE004932

    Article  ADS  Google Scholar 

  8. G. Chiari, P. Sarrazin, M. Gailhanou, Portable XRD/XRF instrumentation for the study of works of art. Powder Differ. 23, 175–186 (2008). https://doi.org/10.1154/1.2951684

    Article  Google Scholar 

  9. A. Mendoza Cuevas, F. Bernardini, A. Gianoncelli, C. Tuniz, Energy dispersive X-ray diffraction and fluorescence portable system for cultural heritage applications. X-Ray Spectrom. 44(3), 105–115 (2015). https://doi.org/10.1002/xrs.2585

    Article  ADS  Google Scholar 

  10. G. Chiari, P. Sarrazin, A. Heginbotham, Non-conventional applications of a noninvasive portable X-ray diffraction/fluorescence instrument. Appl. Phys. A (2016). https://doi.org/10.1007/s00339-016-0521-x

  11. A. Gianoncelli, J. Castaing, L. Ortega, E. Dooryhee, J. Salomon, P. Walter, J.-L. Hodeau, P. Bordet, A portable instrument for in situ determination of the chemical and phase compositions of cultural heritage objects. X-Ray Spectrom. 37(4), 418–423 (2008). https://doi.org/10.1002/xrs.1025

    Article  ADS  Google Scholar 

  12. J. Castaing, M. Dubus, A. Gianoncelli, B. Moignard, P. Walter, Development of a portable X-ray diffraction/x-ray fluorescence device for non-destructive analysis of works of art. Techne 43, 79–83 (2016). https://doi.org/10.4000/techne.737

    Article  Google Scholar 

  13. J. Kieffer, V. Valls, N. Blanc, C. Hennig, New tools for calibrating diffraction setups. J. Synchrotron Radiat. 27(2), 558–566 (2020). https://doi.org/10.1107/S1600577520000776

    Article  Google Scholar 

  14. V.A. Solé, E. Papillon, M. Cotte, P. Walter, J. Susini, A multiplatform code for the analysis of energy-dispersive X-ray fluorescence spectra. Spectrochim. Acta Part B Atom. Spectrosc. 62(1), 63–68. https://doi.org/10.1016/j.sab.2006.12.002

  15. L. de Viguerie, A. Duran, A. Bouquillon, V.A. Solé, J. Castaing, P. Walter, Quantitative X-ray fluorescence analysis of an Egyptian faience pendant and comparison with PIXE. Anal. Bioanal. Chem. 395(7), 2219–2225 (2009). https://doi.org/10.1007/s00216-009-2974-7

    Article  Google Scholar 

  16. É. Welcomme, Développement de techniques combinées de microanalyse par rayonnement synchrotron pour l’étude des pigments à base de carbonates de plomb. PhD thesis, UPMC - Université Paris 6 Pierre et Marie Curie (2007). http://www.theses.fr/2007PA066523

  17. E. Welcomme, P. Walter, P. Bleuet, J.L. Hodeau, E. Dooryhée, P. Martinetto, M. Menu, Classification of lead white pigments using synchrotron radiation micro X-ray diffraction. Appl. Phys. A: Mater. Sci. Process. 89(4), 825–832 (2007). https://doi.org/10.1007/s00339-007-4217-0

    Article  ADS  Google Scholar 

  18. C. Hull, Pewter (Shire Publications Ltd, Buckinghamshire, 1992)

    Google Scholar 

  19. M.J. Hughes, J.P. Northover, B.E.P. Staniaszek, Problems in the analysis of leaded bronze alloys in ancient artefacts. Oxf. J. Archaeol. 1(3), 359–364 (1982). https://doi.org/10.1111/j.1468-0092.1982.tb00320.x

    Article  Google Scholar 

  20. I. Geelen, D. Steyaert, Imitation and illusion: Applied brocade in the art of the low countries in the fifteenth and sixteenth centuries (KIK-IRPA Royal Institute for Cultural Heritage, Scientia Artis 6, Brussels, 2011)

  21. F. Lelong, E. Pouyet, S. Champdavoine, T. Guiblain, P. Martinetto, P. Walter, H. Rousselière, M. Cotte, Des “brocarts appliqués’’ dans la sculpture savoyarde, vers une caractérisation interdisciplinaire. CeROArt (2021). https://doi.org/10.4000/ceroart.7802

    Article  Google Scholar 

  22. P. Martinetto, N. Blanc, P. Bordet, S. Champdavoine, F. Fabre, T. Guiblain, J.-L. Hodeau, F. Lelong, O. Leynaud, A. Prat, E. Pouyet, E. Uher, P. Walter, Non-invasive X-ray investigations of medieval sculptures: New insights on “applied tin-relief brocade’’ technique. J. Cult. Herit. 47, 89–99 (2021). https://doi.org/10.1016/j.culher.2020.10.012

    Article  Google Scholar 

  23. C. Cennini, Il Libro Dell’arte, Le Livre De l’art (Berger-Ievrault, Paris, 1991). Traduit par Colette Déroche

  24. K. Sartori, Tegernsee Manuscript or Liber Illuministarum (Bayerische Staatsbibliothek, Munich) (unpublished) (cod. germ. 821) (late-15th century)

  25. R.J. Gettens, E.W. Fitzhugh, R.L. Feller, Calcium carbonate whites, artists’ pigments, in A Handbook of Their History and Characteristics, vol. 2, ed. by A. Roy (National Gallery of Art, Washington, Oxford University Press, Oxford, 1993), pp.203–226

  26. F. Martínez Casado, M. Riesco, J. Cheda, M. Yelamos, L. Garrido, A. Fernandez-Martinez, J. Garcia-Barriocanal, I. da Silva, M.A. Durán-Olivencia, A. Paul-Poulain, Lead(II) soaps: crystal structures, polymorphism, solid and liquid mesophases. Phys. Chem. Chem. Phys. 19, 17009–17018 (2017). https://doi.org/10.1039/C7CP02351K

    Article  Google Scholar 

  27. A. Duran, J.L. Perez-Rodriguez, M.C. Jimenez de Haro, L.K. Herrera, A. Justo, Degradation of gold and false golds used as gildings in the cultural heritage of Andalusia, Spain. J. Cult. Her. 9(2), 184–188 (2008). https://doi.org/10.1016/j.culher.2007.10.005

    Article  Google Scholar 

Download references

Acknowledgements

This project has received financial support from the French National Research Agency in the framework of the Investissements d’Avenir program (ANR-15-IDEX-02, Cross Disciplinary Program Patrimalp) and from the CNRS through the MITI interdisciplinary program POLYCHROMETAL. The authors are grateful to Sophie Marin, heritage curator at Musée-château d’Annecy, for giving us access to the museum and Lorenzo Appolonia, Executive Emeritus scientific, for authorizing measures on the two Pietà. They also thank Sebastien Gosselin, Curator at the Musée savoisin in Chambéry (Savoie, France) for allowing studies on the SJB, StCr and Ma and Denis Defente for the abbot artefacts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Poline.

Additional information

Focus Point on Scientific Research in Cultural Heritage 2022 Guest editors: L. Bellot-Gurlet, D. Bersani, A.-S. Le Hô, D. Neff, L. Robinet, A. Tournié.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary information:

The supplementary information is presented XRPD patterns and Dino-Lite images that allowed us to propose SJB applied brocades stratigraphy. (pdf 5647KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poline, V., Bordet, P., Leynaud, O. et al. A mobile instrument for joint X-ray fluorescence and diffraction measurements on complex-shape Cultural Heritage objects. Eur. Phys. J. Plus 138, 239 (2023). https://doi.org/10.1140/epjp/s13360-023-03821-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-03821-9

Navigation