Skip to main content
Log in

Neural network evidence of a weakly first-order phase transition for the two-dimensional 5-state Potts model

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

A universal (supervised) neural network (NN), which is trained only once on a one-dimensional lattice of 200 sites, is employed to study the phase transition of the two-dimensional (2D) 5-state ferromagnetic Potts model on the square lattice. In particular, the NN is obtained by using two artificially made configurations as the training set. Due to the unique features of the employed NN, results associated with systems consisting of over 4,000,000 spins can be obtained with ease, and convincing NN evidence showing that the investigated phase transition is weakly first order is reached.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: Data are available from the corresponding author on reasonable request].

References

  1. Z. Li, J.R. Kermode, A. De Vita, Phys. Rev. Lett. 114, 09640096405 (2015)

    ADS  Google Scholar 

  2. V. Mnih, K. Kavukcuoglu, D. Silver, A.A. Rusu, J. Veness, M.G. Bellemare, A. Graves, M. Riedmiller, A.K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, D. Hassabis, Nature 518(7540), 529–533 (2015)

    Article  ADS  Google Scholar 

  3. P. Baldi, K. Cranmer, T. Faucett, P. Sadowski, D. Whiteson, Eur. Phys. J. C 76(5), 235 (2016)

    Article  ADS  Google Scholar 

  4. J. Searcy, L. Huang, M.A. Pleier, J. Zhu, Phys. Rev. D 93(9), 094033 (2016)

    Article  ADS  Google Scholar 

  5. P. Baldi, K. Bauer, C. Eng, P. Sadowski, D. Whiteson, Phys. Rev. D 93, 094034 (2016)

    Article  ADS  Google Scholar 

  6. L. Wang, Phys. Rev. B 94, 195105 (2016)

    Article  ADS  Google Scholar 

  7. J. Carrasquilla, R.G. Melko, Nat. Phys. 13, 431–434 (2017)

    Article  Google Scholar 

  8. G. Carleo, M. Troyer, Science 355, 602 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  9. K. Ch’ng, J. Carrasquilla, R.G. Melko, E. Khatami, Phys. Rev. X 7, 031038 (2017)

    Google Scholar 

  10. P. Broecker, J. Carrasquilla, R.G. Melko, S. Trebst, Sci. Rep. 7, 8823 (2017)

    Article  ADS  Google Scholar 

  11. P.L. van Evert, Y.-H.L. Nieuwenburg, S.D. Huber, Nat. Phys. 13, 435–439 (2017)

    Article  Google Scholar 

  12. J. Tubiana, R. Monasson, Phys. Rev. Lett. 118, 138301 (2017)

    Article  ADS  Google Scholar 

  13. B. Kolb, L.C. Lentz, A.M. Kolpak, Sci. Rep. 7, 1192 (2017)

    Article  ADS  Google Scholar 

  14. J. Liu, H. Shen, Y. Qi, Z.Y. Meng, F. Liang, Phys. Rev. B 95, 241104(R) (2017)

    Article  ADS  Google Scholar 

  15. L. Huang, L. Wang, Phys. Rev. B 95, 035105 (2017)

    Article  ADS  Google Scholar 

  16. J. Liu, Y. Qi, Z.Y. Meng, L. Fu, Phys. Rev. B 95, 041101(R) (2017)

    Article  ADS  Google Scholar 

  17. Y. Nagai, H. Shen, Y. Qi, J. Liu, Phys. Rev. B 96, 161102 (2017)

    Article  ADS  Google Scholar 

  18. X.Y. Xu, Y. Qi, J. Liu, L. Fu, Z.Y. Meng, Phys. Rev. B 96, 041119(R) (2017)

    Article  ADS  Google Scholar 

  19. H. Wenjian, R.P.R. Singh, R.T. Scalettar, Phys. Rev. E 95, 062122 (2017)

    ADS  Google Scholar 

  20. A. Mott, J. Job, J.R. Vlimant, D. Lidar, M. Spiropulu, Nature 550(7676), 375–379 (2017)

    Article  ADS  Google Scholar 

  21. L.G. Pang, K. Zhou, N. Su, H. Petersen, H. Stöcker, X.N. Wang, Nat. Commun. 9(1), 210 (2018)

    Article  ADS  Google Scholar 

  22. C.-D. Li, D.-R. Tan, F.-J. Jiang, Ann. Phys. 391, 312–331 (2018)

    Article  ADS  Google Scholar 

  23. J. Kermode, N. Bernstein, G. Csańyi, Phys. Rev. X 8, 041048 (2018)

    Google Scholar 

  24. P. Zhang, H. Shen, H. Zhai, Phys. Rev. Lett. 120, 066401 (2018)

    Article  ADS  Google Scholar 

  25. J. Gao et al., Phys. Rev. Lett. 120, 240501 (2018)

    Article  ADS  Google Scholar 

  26. S. Lu, Q. Zhou, Y. Ouyang et al., Nat. Commun. 9, 3405 (2018)

    Article  ADS  Google Scholar 

  27. K.T. Butler, D.W. Davies, H. Cartwright, O. Isayev, A. Walsh, Nature 559, 547–555 (2018)

    Article  ADS  Google Scholar 

  28. W. Lian et al., Phys. Rev. Lett. 122, 210503 (2019)

    Article  ADS  Google Scholar 

  29. J.F. Rodriguez-Nieva, M.S. Scheurer, Nat. Phys. 15, 790–795 (2019)

    Article  Google Scholar 

  30. G.P. Conangla, F. Ricci, M.T. Cuairan, A.W. Schell, N. Meyer, R. Quidant, Phys. Rev. Lett. 122, 223602 (2019)

    Article  ADS  Google Scholar 

  31. W. Zhang, J. Liu, T.-C. Wei, Phys. Rev. E 99, 032142 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  32. J. Greitemann, K. Liu, L. Pollet, Phys. Rev. B 99, 060404(R) (2019)

    Article  ADS  Google Scholar 

  33. G. Carleo, I. Cirac, K. Cranmer, L. Daudet, M. Schuld, N. Tishby, L. Vogt-Maranto, L. Zdeborová, Rev. Mod. Phys. 91, 045002 (2019)

    Article  ADS  Google Scholar 

  34. P. Mehta, M. Bukov, C.H. Wang, A.G.R. Day, C. Richardson, C.K. Fisher, D.J. Schwab, Phys. Rep. 810, 1–124 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  35. X.-Y. Dong, F. Pollmann, X.-F. Zhang, Phys. Rev. B 99, 121104(R) (2019)

    Article  ADS  Google Scholar 

  36. D.-R. Tan et al., New J. Phys. 22, 063016 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  37. D. Bachtis, G. Aarts, B. Lucini, Phys. Rev. E 102(3), 033303 (2020)

    Article  ADS  Google Scholar 

  38. S.V. Beentjes, A. Khamseh, Phys. Rev. E 102(5), 053314 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  39. D.-R. Tan, F.-J. Jiang, Phys. Rev. B 102, 224434 (2020)

    Article  ADS  Google Scholar 

  40. M.S. Scheurer, R.-J. Slager, Phys. Rev. Lett. 124, 226401 (2020)

    Article  ADS  Google Scholar 

  41. A. Lidiak, Z. Gong, Phys. Rev. Lett. 125(22), 225701 (2020)

    Article  ADS  Google Scholar 

  42. J. Carrasquilla, Adv. Phys. X 5(1), 1797528 (2020)

    Google Scholar 

  43. P. Baldi, P. Sadowski, D. Whiteson, Phys. Rev. Lett. 114, 111801 (2015)

    Article  ADS  Google Scholar 

  44. X. Han, S.A. Hartnoll, Phys. Rev. X 10, 011069 (2020)

    Google Scholar 

  45. A.J. Larkoski, I. Moult, B. Nachman, Phys. Rep. 841, 1–63 (2020)

    Article  ADS  Google Scholar 

  46. R.J. Shalloo, S.J.D. Dann, J.N. Gruse, C.I.D. Underwood, A.F. Antoine, C. Arran, M. Backhouse, C.D. Baird, M.D. Balcazar, N. Bourgeois et al., Nat. Commun. 11(1), 6355 (2020)

    Article  ADS  Google Scholar 

  47. G. Aad et al., ATLAS. Phys. Rev. Lett. 125(13), 131801 (2020)

    Article  ADS  Google Scholar 

  48. K.A. Nicoli, C.J. Anders, L. Funcke, T. Hartung, K. Jansen, P. Kessel, S. Nakajima, P. Stornati, Phys. Rev. Lett. 126(3), 032001 (2021)

    Article  ADS  Google Scholar 

  49. D.-R. Tan, J.-H. Peng, Y.-H. Tseng, F.-J. Jiang, Eur. Phys. J. Plus 136(11), 1116 (2021)

    Article  Google Scholar 

  50. https://keras.io

  51. https://www.tensorflow.org

  52. S. Raschka, V. Mirjalili, Python machine learning: machine learning and deep learning with python, scikit-learn, and TensorFlow 2, 3rd edn. (Packt, Birmingham, 2019)

    Google Scholar 

  53. A. Géron, Hands-on machine learning with scikit-learn, keras, and tensorflow: concepts, tools, and techniques to build intelligent systems, 2nd edn. (O’Reilly Media, Sebastopol, 2019)

    Google Scholar 

  54. F.Y. Wu, Rev. Mod. Phys. 54, 235 (1982)

    Article  ADS  Google Scholar 

  55. R.H. Swendsen, J.-S. Wang, Phys. Rev. Lett. 58, 86 (1987)

    Article  ADS  Google Scholar 

  56. U. Wolff, Phys. Rev. Lett. 62, 361 (1989)

    Article  ADS  Google Scholar 

  57. A. Billoire, Nucl. Phys. Proc. Suppl. 42, 21–26 (1995)

    Article  ADS  Google Scholar 

  58. A. Billoire, T. Neuhaus, B.A. Berg, Nucl. Phys. B 413, 795 (1994)

    Article  ADS  Google Scholar 

  59. F. Wang, D.P. Landau, Phys. Rev. Lett. 86, 2050 (2001)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Partial support from Ministry of Science and Technology of Taiwan is acknowledged (MOST 110-2112-M-003-015). Data will be made available upon reasonable request. A preprint version has been appeared in arXiv (arXiv:2111.14063).

Author information

Authors and Affiliations

Authors

Contributions

FJJ proposed and supervised the project, and wrote up the manuscript. YHT and YHT conducted the calculations and analyzed the data.

Corresponding author

Correspondence to Fu-Jiun Jiang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tseng, YH., Tseng, YH. & Jiang, FJ. Neural network evidence of a weakly first-order phase transition for the two-dimensional 5-state Potts model. Eur. Phys. J. Plus 137, 1374 (2022). https://doi.org/10.1140/epjp/s13360-022-03597-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-03597-4

Navigation