Skip to main content
Log in

Phase Diagram of the Potts Model with the Number of Spin States q = 4 on a Hexagonal Lattice

  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The Wang–Landau algorithm of the Monte Carlo method is used to study magnetic structures of the ground state, phase transitions, and the thermodynamic properties of the two-dimensional ferromagnetic Potts model with the number of spin states q = 4 on a hexagonal lattice with competing exchange interactions. The studies are performed for the interaction of next nearest neighbors in the range 0 ≤ r ≤ 1.0. The inclusion of antiferromagnetic interactions of next nearest neighbors is shown to lead to a distortion of the magnetic ordering. The phase diagram of the dependence of the critical temperature on the interaction of next nearest neighbors has been built. The phase transition character is analyzed. It is found that the first-order phase transition takes place in the ranges 0 ≤ r ≤ 0.2 and 0.7 ≤ r ≤ 1.0, and the frustrations are observed in the range 0.3 ≤ r ≤ 0.6.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. H. T. Diep, Frustrated Spin Systems (World Scientific, Singapore, 2004), p. 624.

    MATH  Google Scholar 

  2. R. J. Baxter, Exactly Solved Models in Statistical Mechanics (Academic, New York, 1982).

    MATH  Google Scholar 

  3. F. Y. Wu, Exactly Solved Models: A Journey in Statistical Mechanics (World Scientific, New Jersey, 2008).

    Google Scholar 

  4. F. Y. Wu, Rev. Mod. Phys. 54, 235 (1982).

    Article  ADS  Google Scholar 

  5. W. Zhang and Y. Deng, Phys. Rev. E 78, 031103 (2008).

    Article  ADS  Google Scholar 

  6. A. K. Murtazaev, M. K. Ramazanov, F. A. Kassan-Ogly, and M. K. Badiev, J. Exp. Theor. Phys. 117, 1091 (2013).

    Article  Google Scholar 

  7. A. K. Murtazaev, M. K. Ramazanov, and M. K. Badiev, Phys. B (Amsterdam, Neth.) 476, 1 (2015).

  8. F. A. Kassan-Ogly, A. K. Murtazaev, A. K. Zhuravlev, M. K. Ramazanov, and A. I. Proshkin, J. Magn. Magn. Mater. 384, 247 (2015).

    Article  ADS  Google Scholar 

  9. M. Nauenberg and D. J. Scalapino, Phys. Rev. Lett. 44, 837 (1980).

    Article  ADS  Google Scholar 

  10. J. L. Cardy, M. Nauenberg, and D. J. Scalapino, Phys. Rev. B 22, 2560 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  11. M. K. Ramazanov, A. K. Murtazaev, and M. A. Magomedov, Phys. A (Amsterdam, Neth.) 521, 543 (2019).

  12. H. Feldmann, A. J. Guttmann, I. Jensen, R. Shrock, and S.-H. Tsai, J. Phys. A 31, 2287 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  13. F. A. Kassan-Ogly and A. I. Proshkin, Phys. Solid State 60, 1090 (2018).

    Article  ADS  Google Scholar 

  14. A. K. Murtazaev, M. K. Ramazanov, M. K. Mazagaeva, and M. A. Magomedov, J. Exp. Theor. Phys. 129, 421 (2019).

    Article  ADS  Google Scholar 

  15. M. K. Ramazanov, A. K. Murtazaev, M. A. Magomedov, and M. K. Mazagaeva, Phys. Solid State 62, 499 (2020).

    Article  ADS  Google Scholar 

  16. M. K. Ramazanov and A. K. Murtazaev, JETP Lett. 109, 589 (2019).

    Article  ADS  Google Scholar 

  17. A. K. Murtazaev, M. K. Ramazanov, and M. K. Badiev, Phys. Solid State 61, 1854 (2019).

    Article  ADS  Google Scholar 

  18. A. K. Murtazaev, D. R. Kurbanova, and M. K. Ramazanov, Phys. Solid State 61, 2172 (2019).

    Article  ADS  Google Scholar 

  19. M. G. Townsend, G. Longworth, and E. Roudaut, Phys. Rev. B 33, 4919 (1986).

    Article  ADS  Google Scholar 

  20. Y. Chiaki and O. Yutaka, J. Phys. A 34, 8781 (2001).

    Article  MathSciNet  Google Scholar 

  21. R. Masrour, A. Jabar, A. Benyoussef, and M. Hamedoun, J. Magn. Magn. Mater. 410, 223 (2016).

    Article  ADS  Google Scholar 

  22. R. Masrour and A. Jabar, Phys. A (Amsterdam, Neth.) 491, 926 (2018).

  23. R. Masrour and A. Jabar, Phys. A (Amsterdam, Neth.) 515, 270 (2019).

  24. A. K. Murtazaev, M. K. Ramazanov, and M. K. Badiev, Phys. A (Amsterdam, Neth.) 507, 210 (2018).

  25. F. Wang and D. P. Landau, Phys. Rev. E 64, 0561011 (2001).

    Google Scholar 

  26. F. Wang and D. P. Landau, Phys. Rev. Lett. 86, 2050 (2001).

    Article  ADS  Google Scholar 

  27. K. Binder and D. Heermann, Monte Carlo Simulation in Statistical Physics: An Introduction (Springer, Berlin, Heidelberg, 2010).

    Book  Google Scholar 

  28. M. K. Ramazanov and A. K. Murtazaev, JETP Lett. 106, 86 (2017).

    Article  ADS  Google Scholar 

  29. A. K. Murtazaev, T. R. Rizvanova, M. K. Ramazanov, and M. A. Magomedov, Phys. Solid State 62, 1434 (2020).

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 19-02-00153-a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Murtazaev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by Yu. Ryzhkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murtazaev, A.K., Mazagaeva, M.K., Ramazanov, M.K. et al. Phase Diagram of the Potts Model with the Number of Spin States q = 4 on a Hexagonal Lattice. Phys. Solid State 63, 742–747 (2021). https://doi.org/10.1134/S1063783421050139

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783421050139

Keywords:

Navigation