Skip to main content
Log in

Regularity and analysis of solutions for a MHD flow with a p-Laplacian operator and a generalized Darcy–Forchheimer term

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The modeling of fluid flows with a p-Laplacian operator has attracted the interest of researchers to describe non-Newtonian fluids. One of the main reasons is the possibility of obtaining values for p (in the p-Laplacian) based on experimental settings. The main contributions of our study consist in providing analytical assessments of weak solutions, together with a numerical validating analysis, to a one-dimensional fluid in magnetohydrodynamics (MHD) flowing in porous media. We define a new Darcy–Forchheimer term and a generalized form of a constitutive kinematic that provides a p-Laplacian operator. Firstly, we discuss about the regularity and boundedness of weak solutions to support the existence and uniqueness analyses. Afterward, we explore solutions based on a selfsimilar profile. The resulting elliptic equation is solved based on the analytical perturbation technique. Eventually, a numerical analysis is provided with the intention of validating the analytical solution obtained. As a remarkable outcome, we establish minimum values in the selfsimilar variable for which the global distances between the analytical and the numerical solutions are below \(10^{-2}\) and \(10^{-3}\). Indeed, the convergence between both solutions is given under an asymptotic approach, where the decaying rates in the obtained solutions are sufficiently close.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability Statement

No data associated in the manuscript.

References

  1. O. Smreker, Entwicklung eines Gesetzes für den Widerstand bei der Bewegung des Grund-wassers. Zeitschr. des Vereines deutscher Ing. 22(4), 117–128 (1878)

    Google Scholar 

  2. O. Smreker, Das Grundwasser und seine Verwendung zu Wasserversorgungen. Zeitschr. desVereines deutscher Ing. 23(4), 347–362 (1879)

    Google Scholar 

  3. J. Benedikt, P. Girg, L. Kotrla, P. Takac, Origin of the p-Laplacian and A. Missbach. Electron. J. Differ. Equ. 2018(16), 1–17 (2018)

    MathSciNet  MATH  Google Scholar 

  4. L. Xiliu, M. Chunlai, Z. Qingna and Z., Shouming, Quenching for a Non-Newtonian Filtration Equation with a Singular Boundary Condition, in Abstract and Applied Analysis (2012). Special Issue. https://doi.org/10.1155/2012/539161

  5. J. Zhang, Y. Gao, Study of solutions for a non-Newtonian filtration equation with nonlocal boundary condition. Adv. Mater. Res. 834–836, 1889–1892 (2013). https://doi.org/10.4028/www.scientific.net/AMR.834-836.1889

    Article  ADS  Google Scholar 

  6. X. Zhao, X. Qin, W. Zhou, Boundary layer behavior of the non-Newtonian filtration equation with a small physical parameter. J. Math. Anal. Appl. 495(1), 124723 (2021). https://doi.org/10.1016/j.jmaa.2020.124723

    Article  MathSciNet  MATH  Google Scholar 

  7. Z. Wu, J. Yin, H. Li , J. Zhao, Non-Newtonian Filtration Equations, in Nonlinear Diffusion Equations (World Scientific, 2001), pp. 147–268. https://doi.org/10.1142/97898127997910002

  8. O.A. Ladyzhenskaja, New equation for the description of incompressible fluids and solvability in the large boundary value for them. Proc. Steklov Inst. Math. 102, 95–118 (1967)

    Google Scholar 

  9. P. Lindqvist, Note on a nonlinear eigenvalue problem. Rocky Mt. J. Math. 23, 281–288 (1993). https://doi.org/10.1216/rmjm/1181072623

    Article  MathSciNet  MATH  Google Scholar 

  10. L.K. Martinson, K.B. Pavlov, The effect of magnetic plasticity in non-Newtonian fluids. Magnit. Gidrodinamika 2, 50–58 (1970)

    Google Scholar 

  11. G. Bognar, Numerical and Analytic Investigation of Some Nonlinear Problems in Fluid Mechanics. Comput. Simul. Modern Sci. 2, 172–179 (2008)

    Google Scholar 

  12. J.I. Diaz, F. de Thelin, On a nonlinear parabolic problem arising in some models related to turbulent flows. SIAM J. Math. Anal. 25(4), 1085–1111 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  13. J. Douchet, The number of positive solutions of a nonlinear problem with a discontinuous nonlinearity. Proc. Roy. Soc. Edinburgh Sect. A 90, 281–291 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  14. P. Drabek, P. Girg, P. Takac, U. Ulm, The Fredholm alternative for the p-Laplacian: bifurcation from infinity, existence and multiplicity of solutions. Indiana Univ. Math. J. 53, 433–482 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. P. Drabek, J. Hernandez, Existence and uniqueness of positive solutions for some quasilinear elliptic problem. Nonlinear Anal. 44, 189–204 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. L.C. Evans, W. Gangbo, Differential equations methods for the Monge–Kantorovich mass transfer problem. Mem. Am. Math. Soc. 137(653), 66 (1999)

    MathSciNet  MATH  Google Scholar 

  17. R. Glowinski, J. Rappaz, Approximation of a nonlinear elliptic problem arising in a non-Newtonian fluid flow model in glaciology. Math. Model. Numer. Anal. 37(1), 175–186 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. L. Li, J.G. Liu, p-Euler equations and p-Navier–Stokes equations. J. Differ. Equ. 264, 4707–4748 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. P. Arturo, J.L. Vazquez, The balance between strong reaction and slow diffusion. Commun. Part. Diff. Equ. 15, 159–183 (1990). https://doi.org/10.1080/03605309908820682

    Article  MathSciNet  MATH  Google Scholar 

  20. A. De Pablo, J.L. Vazquez, Travelling waves and finite propagation in a reaction-diffusion Equation. J. Differ. Equ. 93, 19–61 (1991). https://doi.org/10.1016/0022-0396(91)90021-Z

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. E.F. Keller, L.A. Segel, Traveling bands of chemotactic bacteria: a theoretical analysis. J. Theoret. Biol. 30, 235–248 (1971). https://doi.org/10.1016/0022-5193(71)90051-8

    Article  ADS  MATH  Google Scholar 

  22. J. Ahn, C. Yoon, Global well-posedness and stability of constant equilibria in parabolic-elliptic chemotaxis system without gradient sensing. Nonlinearity 32, 1327–1351 (2019). https://doi.org/10.1088/1361-6544/aaf513

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. E. Cho, Y.J. Kim, Starvation driven diffusion as a survival strategy of biological organisms. Bull. Math. Biol. 75, 845–870 (2013). https://doi.org/10.1007/s11538-013-9838-1

    Article  MathSciNet  MATH  Google Scholar 

  24. Y. Tao, M. Winkler, Effects of signal-dependent motilities in a keller-segel-type reaction–diffusion system. Math. Models Methods Appl. Sci. 27, 1645–1683 (2017). https://doi.org/10.1142/S0218202517500282

    Article  MathSciNet  MATH  Google Scholar 

  25. C. Yoon, Y.J. Kim, Global existence and aggregation in a Keller–Segel model with Fokker–Planck diffusion. Acta Appl. Math. 149, 101–123 (2016). https://doi.org/10.1007/s10440-016-0089-7

    Article  MathSciNet  MATH  Google Scholar 

  26. A. Shahid, H. Huang, M.M. Bhatti, L. Zhang, R. Ellahi, Numerical investigation on the swimming of gyrotactic microorganisms in nanofluids through porous medium over a stretched surface. Mathematics 8, 380 (2020). https://doi.org/10.3390/math803038

    Article  Google Scholar 

  27. M. Bhatti, A. Zeeshan, R. Ellahi, O. Anwar Beg, A. Kadir, Effects of coagulation on the twophase peristaltic pumping of magnetized prandtl biofluid through an endoscopic annular geometry containing a porous medium. J. Phys. 58, 222–234 (2019). https://doi.org/10.1016/j.cjph.2019.02.004

    Article  Google Scholar 

  28. L. Haiyin, Hopf bifurcation of delayed density-dependent predator–prey model. Acta Math. Sci. Ser. A 39, 358–371 (2019)

    MathSciNet  MATH  Google Scholar 

  29. M. Schoenauer, A Monodimensional model Mor fracturingF, in Free Boundary Problems, Theory Applications, vol. 2, ed. by A. Fasano, M. Primicerio (Pitman Research Notes in Mathematics, London, 1983), pp.701–711

    Google Scholar 

  30. U. Rehman, M. Bilal, M. Sheraz, Theoretical analysis of magnetohydrodynamical waves for plasma based coating process of isothermal viscous-plastic fluid. WSEAS Trans. Heat and Transf. 17, 54–65 (2022)

    Article  Google Scholar 

  31. C. Pleumpreedaporn, A.P. Snodin, E.J. Moore, A comparison with theory of computation and estimation of pitch-angle diffusion coefficients from simulations in noisy reduced magnetohydrodynamic turbulence. WSEAS Trans. Math. 21, 271–278 (2022)

    Article  Google Scholar 

  32. J.P. Escandon, F. Santiago, O. Bautista, Temperature distributions in a parallel flat plate microchannel with electroosmotic and magnetohydrodynamic micropumps. Eng. World 2, 10–14 (2020)

    Google Scholar 

  33. N.S. Akbar, A. Ebaid, Z. Khan, Numerical analysis of magnetic field effects on Eyring–Powell fluid flow towards a stretching sheet. J. Magn. Magn. Mater. 382, 355–358 (2015)

    Article  ADS  Google Scholar 

  34. M. Bhatti, T. Abbas, M. Rashidi, M. Ali, Z. Yang, Entropy generation on MHD Eyring-Powell nanofluid through a permeable stretching surface. Entropy 18, 224 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  35. M.-C. Pelissier, L. Reynaud, Etude d’un mod-le math-matique d’ecoulement de glacier, C. R. Acad. Sci., Paris, S-r. A 279 , 531–534 (1974)

  36. N. Eldabe, A. Hassan, M.A. Mohamed, Effect of couple stresses on the MHD of a non-Newtonian unsteady flow between two parallel porous plates. Zeitschrift fur Naturforschung A 58, 204–210 (2003)

    Article  ADS  Google Scholar 

  37. S. Kamin, J.L. Vazquez, Fundamental Solutions and Asymptotic Behaviour for the p-Laplacian—Equation. Revista Matematica Iberoamericana 4, 339–354 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  38. M. Bardi, Asympotitical spherical symmetry of the free boundary in degenerate diffusion equations. Annali di Matematica Pura ed Applicata 148, 117–130 (1987). https://doi.org/10.1007/BF01774286

    Article  MathSciNet  MATH  Google Scholar 

  39. P. Drabek, S. Robinson, Resonance Problems for the p-Laplacian. J. Funct. Anal. 169, 189–200 (1999). https://doi.org/10.1006/jfan.1999.3501

    Article  MathSciNet  MATH  Google Scholar 

  40. P.H. Benilan, Operateurs accretifs et semi-groupes dans les espaces \(L_{p}(1\le p\le \infty )\) (France-Japan Seminar, Tokyo, 1976)

  41. S. Kamin, J.L. Vazquez, Fundamental solutions and asymptotic behaviour for the p-Laplacian—equation, Revista Matem-atica. Iberoamericana 4, 339–354 (1988)

    MATH  Google Scholar 

  42. A. de Pablo, J.L. V-zquez, Travelling waves and fnite propagation in a reaction–diffusion equation. J. Differ. Equ. 93, 19–61 (1991)

    Article  ADS  Google Scholar 

  43. H. Enright, P.H. Muir, A Runge-Kutta Type Boundary Value ODE Solver with Defect Control; Technical Reports; University of Toronto, Department of Computer Sciences, Toronto, Vol. 267 (1993), p. 93

Download references

Acknowledgements

The authors would like to thank the anonymous reviewers and the editor for their comments and kindness in reviewing the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Luis Díaz Palencia.

Ethics declarations

Conflict of interest

This work has no associated conflicts of interest

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahman, S.u., Palencia, J.L.D. Regularity and analysis of solutions for a MHD flow with a p-Laplacian operator and a generalized Darcy–Forchheimer term. Eur. Phys. J. Plus 137, 1328 (2022). https://doi.org/10.1140/epjp/s13360-022-03555-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-03555-0

Navigation