Skip to main content
Log in

The study of accelerating DE models in Saez–Ballester theory of gravitation

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The investigation in the present work is carried out on the spatially homogeneous and anisotropic axially symmetric space-time in the presence of two fluids, one being the pressureless matter and other being the different kinds of holographic dark energy (HDE). Eventually, in the present work, cosmological models with Tsallis HDE, Renyi HDE, Sharma–Mittal HDE by taking Hubble radius as infrared (IR) cutoff (\(L=H^{-1}\)) are obtained. The geometrical and matter parts of space-time are solved within the Saez–Ballester scalar-tensor theory of gravitation. Interestingly, in this study a time varying deceleration parameter (q) which exhibits a transition from deceleration to acceleration phase is obtained without assuming any scale factor. In the present work, the study of cosmic expansion is done through the scalar field (\(\phi\)) and various cosmological parameters like EoS, deceleration, statefinder, etc. The EoS parameter exhibits quintom-like behavior for Tsallis HDE model, the transition from matter-dominated phase to phantom phase for Renyi HDE model, whereas it shows quintessence behavior for Sharma–Mittal HDE. The stability analysis for three models is studied through the squared speed of sound (\(v_s^2\)). For all redshift (z) values \(v_s^2>0\), the Sharma–Mittal HDE model is stable throughout the universe’s expansion. In this work, the obtained results match with recent observational data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Data Availability Statement

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. A.G. Riess et al., Observational evidence from supernovae for an accelerating Universe and a cosmological constant. Astron. J. 116, 1009–1038 (1998)

    Article  Google Scholar 

  2. S. Perlmutter et al., Measurements of \(\Omega\) and \(\Lambda\) from \(42\) high-redshift supernovae. Astrophys. J. 517, 565–586 (1999)

    Article  MATH  Google Scholar 

  3. P. Bernardis et al., A flat Universe from high-resolution maps of the cosmic microwave background radiation. Nature 404, 955–959 (2000)

    Article  Google Scholar 

  4. S. Perlmutter et al., New constraints on and w from an independent set of \(11\) high-redshift supernovae observed with the hubble space telescope. Astrophys. J. 598, 102–137 (2003)

    Article  Google Scholar 

  5. S. Hanany et al., MAXIMA-1: A measurement of the cosmic microwave background anisotropy on angular scales of 10 arcminutes to 5 degrees. Astrophys. J. Lett. 545, L5–L9 (2000)

    Article  Google Scholar 

  6. C.B. Netterfield et al., A measurement by BOOMERANG of multiple peaks in the angular power spectrum of the cosmic microwave background. Astrophys. J. 571, 604–614 (2002)

    Article  Google Scholar 

  7. D.N. Spergel et al., First year wilkinson microwave anisotropy probe (WMAP) observations: determination of cosmological parameters. Astrophys. J. Suppl. 148, 175–194 (2003)

    Article  Google Scholar 

  8. M. Colless et al., The 2dF galaxy redshift survey: spectra and redshift. Mon. Not. R. Astron. Soc. 328, 1039–1063 (2001)

    Article  Google Scholar 

  9. M. Tegmark et al., Cosmological parameters from SDSS and WMAP. Phys. Rev. D 69, 103501–103526 (2004)

    Article  MATH  Google Scholar 

  10. S. Cole et al., The 2dF galaxy redshift survey: Power-spectrum analysis of the final dataset and cosmological implications. Mon. Not. R. Astron. Soc. 362, 505–534 (2005)

    Article  Google Scholar 

  11. V. Springel, C.S. Frenk, S.M.D. White, The large-scale structure of the universe. Nature 440, 1137–1144 (2006)

    Article  Google Scholar 

  12. C.H. Brans, R.H. Dicke, Mach’s principle and a relativistic theory of gravitation. Phys. Rev. D 124, 925–935 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  13. D. Saez, V.J. Ballester, A simple coupling with cosmological implications. Phys. Lett. A 113, 467–470 (1986)

    Article  Google Scholar 

  14. A.D. Felice, S. Tsujikawa, \(f(R)\) Theories. Living Rev. Relativ. 13, 3–163 (2010)

    Article  MATH  Google Scholar 

  15. V. Sahni, The cosmological constant problem and quintessence. Class. Quant. Grav. 19, 3435–3448 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. S. Nojiri, S.D. Odintsov, Unified cosmic history in modified gravity: from \(f(R)\) theory to Lorentz non-invariant models. Phys. Rep. 505, 59–144 (2011)

    Article  MathSciNet  Google Scholar 

  17. E.V. Linder, Einstein’s other gravity and the acceleration of the universe. Phys. Rev. D 81, 127301–127303 (2010)

    Article  Google Scholar 

  18. R. Ferraro, F. Fiorini, Non-trivial frames for \(f(T)\) theories of gravity and beyond. Phys. Lett. B 702, 75–80 (2011)

    Article  MathSciNet  Google Scholar 

  19. M. Sharif, S. Rani, Wormhole solutions in \(f(T)\) gravity with noncommutative geometry. Phys. Rev. D 88, 123501–123510 (2013)

    Article  MATH  Google Scholar 

  20. T. Harko, S.N. Francisco, F.S.N. Lobo, S. Nojiri, S.D. Odintsov, \(f(R, T)\) gravity. Phys. Rev. D 84, 024020–024031 (2011)

    Article  Google Scholar 

  21. S. Weinberg, The cosmological constant problem. Rev. Mod. Phys. 61, 1 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  22. J. Martin, The phenomenological approach to modeling the dark energy. Compt. Rend. Phys. 13, 566 (2012)

    Article  Google Scholar 

  23. M. Malekjani, T. Naderi, F. Pace, Effects of ghost dark energy perturbations on the evolution of spherical overdensities. Mon. Not. R. Astron. Soc B 453, 4148–4158 (2015)

    Google Scholar 

  24. C. Armendariz-Picon, V. Mukhanov, P.J. Steinhardt, Essentials of k-essence. Phys. Rev. D 63, 103510 (2001)

    Article  Google Scholar 

  25. T. Chiba, Tracking k-essence. Phys. Rev. D 66, 063514 (2002)

    Article  Google Scholar 

  26. I. Zlatev, L. Wang, P.J. Steinhardt, Quintessence, Cosmic Coincidence, and the Cosmological Constant. Phys. Rev. Lett. 1999, 82, 896 (1999)

  27. R.R. Caldwell, M. Kamionkowski, N.N. Weinberg, Phantom energy: dark energy with \(\omega <1\) causes a cosmic doomsday. Phys. Rev. Lett. 91, 071301 (2003)

    Article  Google Scholar 

  28. P. González-Diíaz, You need not be afraid of phantom energy. Phys. Rev. D 68, 021303 (2003)

    Article  Google Scholar 

  29. L. Amendola, F. Finelli, C. Burigana, D. Carturan, WMAP and the generalized Chaplygin gas. J. Cosm. Astrop. Phys. 7, 005 (2003)

    Article  MATH  Google Scholar 

  30. M.C. Bento, O. Bertolami, A.A. Sen, Generalized Chaplygin gas, accelerated expansion, and dark-energy-matter unification. Phys. Rev. D 66, 043507 (2002)

    Article  Google Scholar 

  31. Z. Keresztes, L.A. Gergely, AYu. Kamenshchik, V. Gorini, D. Polarski, Soft singularity crossing and transformation of matter properties. Phys. Rev. D 88, 023535 (2003)

    Article  Google Scholar 

  32. M.R. Setare, The holographic dark energy in non-flat Brans-Dicke cosmology. Phys. Lett. B 644, 99–103 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  33. K. Kleidis, N.K. Spyrou, Polytropic dark matter flows illuminate dark energy and accelerated expansion. Astron. Astrographys. 576, A23 (2015)

    Article  Google Scholar 

  34. K. Kleidis, N.K. Spyrou, Dark Energy: The Shadowy Reflection of Dark Matter. Entropy 18, 94 (2016)

    Article  Google Scholar 

  35. M. Li, A Model of holographic dark energy. Phys. Lett. B 603, 1 (2004)

    Article  Google Scholar 

  36. D. Pavon, W. Zimdahl, Holographic dark energy and cosmic coincidence. Phys. Lett. B 628, 206 (2005)

    Article  MATH  Google Scholar 

  37. Q.G. Huang, M. Li, The holographic dark energy in a non-flat universe. J. Cosm. Astrop. Phys. 8, 013 (2004)

    Article  MathSciNet  Google Scholar 

  38. Q.G. Huang, Y. Gong, Supernova Constraints on a holographic dark energy model. arXiv:astro-ph/0403590 (2004)

  39. Y. Gong, Extended holographic dark energy. Phys. Rev. D 70, 064029 (2004)

    Article  Google Scholar 

  40. G. t Hooft, Dimensional reduction in quantum gravity. arXiv:gr-qc/9310026 (1993)

  41. L. Susskind, The World as a Hologram. J. Math. Phys. 36, 6377–6396 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  42. A. Cohen, D. Kaplan, A. Nelson, Effective field theory, black holes, and the cosmological constant. Phys. Rev. Lett. 82, 4971 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  43. S.D.H. Hsu, Entropy bounds and dark energy. Phys. Lett. B 594, 13 (2004)

    Article  Google Scholar 

  44. L. Xu, Holographic dark energy model with Hubble horizon as an IR cut-off. J. Cosm. Astrop. Phys. 9, 016 (2009)

    Article  Google Scholar 

  45. J. Liu, Y. Gong, X. Chen, Dynamical behavior of the extended holographic dark energy with the Hubble horizon. Phys. Rev. D 81, 083536 (2010)

    Article  Google Scholar 

  46. Y. Nomura, G.N. Remmen, Area law unification and the holographic event horizon. J. High Ener. Phys. 2018, 063 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  47. H.M. Sadjadi, The particle versus the future event horizon in an interacting holographic dark energy model. J. Cosm. Astrop. Phys 2, 026 (2007)

    Article  Google Scholar 

  48. Z.P. Huang, Y.L. Wu, Holographic dark energy model characterized by the conformal-age-like length. Int. J. Mod. Phys. A 27, 1250085 (2012)

    Article  MATH  Google Scholar 

  49. Z.P. Huang, Y.L. Wu, Cosmological constraint and analysis on holographic dark energy model characterized by the conformal age-like length. Int. J. Mod. Phys. A 27, 1250130 (2012)

    Article  MATH  Google Scholar 

  50. E.K. Li, Yu. Zhang, G.J. Ling, D. Peng-Fei, Generalized holographic Ricci dark energy and generalized second law of thermodynamics in Bianchi Type I universe. Gen. Rel. Grav. 47, 136 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  51. A. Khodam-Mohammadi, A. Pasqua, M. Malekjani, I. Khomenko, M. Monshizadeh, Statefinder diagnostic of logarithmic entropy corrected holographic dark energy with Granda-Oliveros IR cut-off. Astrophys. Spa. Sci. 345, 415 (2013)

    Article  Google Scholar 

  52. Y. Sobhanbabu, M.Vijaya Santhi, Kantowski-Sachs Tsallis holographic dark energy model with sign-changeable interaction. Eur. Phys. J. C 81, 1040 (2021)

    Article  Google Scholar 

  53. M.Vijaya Santhi, Y. Sobhanbabu, Bianchi type-III Tsallis holographic dark energy model in Saez-Ballester theory of gravitation. Eur. Phys. J. C 80, 1198 (2020)

    Article  Google Scholar 

  54. S. Abe, General pseudoadditivity of composable entropy prescribed by the existence of equilibrium. Phys. Rev. E 63, 061105 (2001)

    Article  Google Scholar 

  55. H. Touchette, When is a quantity additive and when is it extensive. Physica A 305, 84–88 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  56. A. Majhi, Non-extensive statistical mechanics and black hole entropy from quantum geometry. Phys. Lett. B 775, 32–36 (2017)

    Article  MathSciNet  Google Scholar 

  57. C. Tsallis, L.J.L. Cirto, Black hole thermodynamical entropy. Eur. Phys. J. C 73, 2487 (2013)

    Article  Google Scholar 

  58. M. Tavayef, A. Sheykhi, K. Bamba, H. Moradpour, Tsallis holographic dark energy. Phys. Lett. B. 781, 195–200 (2018)

    Article  Google Scholar 

  59. H. Moradpour, S.A. Moosavi, I.P. Morais, I.P. Lobo, I.G. Salako, A. Jawad, Thermodynamic approach to holographic dark energy and the Renyi entropy. Eur. Phys. J. C 78, 829 (2018)

    Article  Google Scholar 

  60. A.S. Jahromi, S.A. Moosavi, H. Moradpour, I.P. Morais, I.P. Lobo, I.G. Salako, A. Jawad, Generalized entropy formalism and a new holographic dark energy model. Phys. Lett. B 780, 21–24 (2018)

    Article  MathSciNet  Google Scholar 

  61. Y. Aditya, S. Mandal, P.K. Sahoo, Observational constraint on interacting Tsallis holographic dark energy in logarithmic Brans-Dicke theory. Eur. Phys. J. C 79, 1020 (2019)

    Article  Google Scholar 

  62. U.Y. Divya Prasanthi, Y. Aditya, Anisotropic Renyi holographic dark energy models in general relativity. Results Phys. 17, 103101 (2020)

  63. U.Y. Divya Prasanthi, Y. Aditya, Observational constraints on Renyi holographic dark energy in Kantowski-Sachs universe. Phys. Dark Univ. 31, 100782 (2021)

  64. M. Younas, A. Jawad, S. Qummer, H. Moradpour, S. Rani, Cosmological implications of the generalized entropy based holographic dark energy models in dynamical chern-simons modified gravity. Adv. High Energy Phys. 1287932 (2019)

  65. S. Maity, U. Debnath, Tsallis, Renyi and Sharma-Mittal holographic and new agegraphic dark energy models in D-dimensional fractal universe. Eur. Phys. J. Plus 134, 514 (2019)

    Article  Google Scholar 

  66. A. Iqbal, A. Jawad, Tsallis, Renyi and Sharma-Mittal holographic dark energy models in DGP brane-world. Phys. Dark Univ. 26, 100349 (2019)

    Article  Google Scholar 

  67. A. Jawad, K. Bamba, M. Younas, S. Qummer, S. Rani, Tsallis, Rényi and Sharma-Mittal holographic dark energy models in loop quantum cosmology. Symmetry 10, 635 (2018)

    Article  Google Scholar 

  68. C.L. Bennett et al., First-year wilkinson microwave anisotropy probe (WMAP) observations: preliminary maps and basic results. Astron. Astrophys. Suppl. Ser. 148, 1–27 (2003)

    Article  Google Scholar 

  69. O. Akarsu, C.B. Kilinc, de Sitter expansion with anisotropic fluid in Bianchi type-I space-time. Astrophys. Space Sci. 326, 315–322 (2010)

    Article  MATH  Google Scholar 

  70. G. Ramesh, S. Umadevi, LRS bianchi type-II minimally interacting holographic dark energy model in Sáez-Ballester theory of gravitation. Astrophys. Space Sci. 361, 50 (2016)

    Article  Google Scholar 

  71. V.U.M. Rao, U.Y.D. Prasanthi, Y. Aditya, Plane symmetric modified holographic Ricci dark energy model in Sáez Ballester theory of gravitation. Results Phys. 10, 469–475 (2018)

    Article  Google Scholar 

  72. S.M.M. Rasouli, P.V. Moniz, Modified Sáez-Ballester scalar-tensor theory from 5D space-time. Class. Quantum Gravity 35, (1-23) (2018)

  73. U.K. Sharma, R. Zia, A. Pradhan, Transit cosmological models with perfect fluid and heat flow in Sáez-Ballester theory of gravitation. J. Astrophys. Astron. 40, 2 (2019)

    Article  Google Scholar 

  74. C. Chawla, R.K. Mishra, A. Pradhan, A new class of accelerating cosmological models with variable \(G\) and \(\Lambda\) in sáez and ballester theory of gravitation. Rom. J. Phys. 59, 12–25 (2014)

    Google Scholar 

  75. R.K. Mishra, H. Dua, Bulk viscous string cosmological models in Sáez-Ballester theory of gravity. Astrophys. Space Sci. 364, 195 (2019)

    Article  Google Scholar 

  76. R.K. Mishra, A. Chand, Cosmological models in Sáez-Ballester theory with bilinear varying deceleration parameter. Astrophys Space Sci. 365, 76 (2020)

    Article  Google Scholar 

  77. S.M.M. Rasouli et al., Late time cosmic acceleration in modified Saez-Ballester theory. Phys. Dark Univ. 27, 100446 (2020)

    Article  Google Scholar 

  78. V.U.M. Rao, T. Vinutha, M. Vijaya Shanthi, An exact Bianchi type-V cosmological model in Saez-Ballester theory of gravitation. Astrophys. Space Sci. 312, 189-191 (2007)

  79. C.P. Singh, M. Zeyauddin, S. Ram, Anisotropic Bianchi-\(V\) cosmological models in Saez Ballester theory of gravitation. Int. J. Modern Phys. A 28, 2719–2731 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  80. V.U.M. Rao, M. Vijaya Santhi, T. Vinutha, Exact Bianchi type II, VIII and IX string cosmological models in Saez-Ballester theory of gravitation. Astrophys. Space Sci. 314, 73-77 (2008)

  81. G.C. Samata, S.K. Biswal, P.K. Sahoo, Five Dimensional Bulk Viscous String Cosmological Models in Saez and Ballester Theory of Gravitation. Int. J. Theor. Phys. 52, 1 (2013)

    MathSciNet  MATH  Google Scholar 

  82. T. Vinutha, V.U.M. Rao, G. Bekele, M. Mengesha, Dark energy cosmological models with cosmic string. Astrophys. Space Sci. 363, 188 (2018)

    Article  MathSciNet  Google Scholar 

  83. T. Vinutha, V.U.M. Rao, G. Bekele, K.S. Kavya, Viscous string anisotropic cosmological model in scalar-tensor theory. Indian journal of Phys. 95, 1933 (2021)

    Article  Google Scholar 

  84. M.R. Setare, The holographic dark energy in non-flat Brans-Dicke cosmology. Phys. Lett. B 644, 99–103 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  85. Narayan Banerjee, Diego Pavon, Holographic dark energy in Brans-Dicke theory. Phys. Lett. B 647, 477–481 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  86. C.P. Singh, P. Kumar, Holographic Dark Energy in Brans-Dicke Theory with Logarithmic Form of Scalar Field. Int. J. Theor. Phys. 56, 3297–3310 (2017)

    Article  MATH  Google Scholar 

  87. Dao-Jun. Liu, Hua Wang, Bin Yang, Modified holographic dark energy in DGP brane world. Phys. Lett. B 694, 6–9 (2010)

    Article  Google Scholar 

  88. M.R. Setare, E.C. Vanegas, The cosmological dynamics of interacting holographic dark energy model. Int. J. Mod. Phys. D 18, 147 (2009)

    Article  MATH  Google Scholar 

  89. Y. Aditya, D.R.K. Reddy, FRW type Kaluza-Klein modified holographic Ricci dark energy models in Brans-Dicke theory of gravitation. Eur. Phys. J. C 78, 619 (2019)

    Article  Google Scholar 

  90. S. Bhattacharaya, T.M. Karade, Uniform anisotropic cosmological model with string source. Astrophys. Space Sci. 202, 69–75 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  91. S.W. Hawking, G.F.R. Ellis, The large scale structure of Space-time, p. 88. Cambridge University Press(1975)

  92. K.S. Thorne, Primordial element formation, primordial magnetic fields, and the isotropy of the universe. Astrophys. J. 148, 51 (1967)

    Article  Google Scholar 

  93. J. Kristian, R.K. Sachs, Observations in cosmology. Astrophys. J. 143, 379 (1966)

    Article  MathSciNet  Google Scholar 

  94. R. Kantowski, R.K. Sachs, Some spatially homogeneous anisotropic relativistic cosmological models. J. Math. Phys. 7, 433 (1966)

    Article  MathSciNet  Google Scholar 

  95. C.B. Collins, E.N. Glass, D.A. Wilkinson, Exact spatially homogeneous cosmologies. Gen. Relativ. Gravit. 12, 805–823 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  96. Y. Aditya, D.R.K. Reddy, Anisotropic new holographic dark energy model in Saez-Ballester theory of gravitation. Astrophys. Space Sci. 363, 207 (2018)

    Article  MathSciNet  Google Scholar 

  97. B. Mishra, P.K. Sahoo, Bianchi type VI h perfect fluid cosmological model in \(f(R, T)\) theory. Astrophys. Space Sci. 352, 331–336 (2014)

    Article  Google Scholar 

  98. O. Akarsu, C.B. Kilinc, LRS Bianchi type I models with anisotropic dark energy and constant deceleration parameter. Gen. Relativ. Gravit. 42, 119–140 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  99. K.S. Adhav, LRS Bianchi type-I universe with anisotropic dark energy in lyra geometry. Int. J. Astron. Astrophys. 1, 204 (2011)

    Article  Google Scholar 

  100. M. Vijaya Santhi, Y. Aditya, V.U.M. Rao, Some Bianchi type generalized ghost piligrim dark energy models in general relativity. Astrophys. Space Sci. 361, 142 (2016)

    Article  MathSciNet  Google Scholar 

  101. M. Vijaya Santhi, V.U.M. Rao, Y. Aditya, Bianchi type-VI0 modified holographic Ricci dark energy model in a scalar-tensor theory. Can. J. Phys. 95, 179-183 (2017)

  102. B.D. Sharma, D.P. Mittal, New non-additive measures of entropy for discrete probability distributions. J. Math. Sci. 10, 28 (1975)

    MathSciNet  Google Scholar 

  103. N.G. Busca et al., Baryon acoustic oscillations in the Ly\(\alpha\) forest of BOSS quasars. Astron. Astrophys. 552, A96 (2013)

    Article  Google Scholar 

  104. S. Capozziello, O. Farooq, O. Luongo, B. Ratra, Cosmographic bounds on the cosmological deceleration-acceleration transition redshift in \(f(R)\) gravity. Phys. Rev. D 90, 044016 (2014)

    Article  Google Scholar 

  105. Y. Yang, Y. Gong, The evidence of cosmic acceleration and observational constraints. arXiv:1912.07375

  106. J. Lu, L. Xu, M. Liu, Constraints on kinematic models from the latest observational data. Phys. Lett. B 699, 246–250 (2011)

    Article  Google Scholar 

  107. V. Sahni, T.D. Saini, A.A. Starobinsky, U. Alam, Statefinder-a new geometrical diagnostic of dark energy. J. Exp. T. Phys. Lett. 77, 201–206 (2003)

    Article  Google Scholar 

  108. U. Alam, V. Sahni, T.D. Saini, A.A. Starobinsky, Exploring the expanding Universe and dark energy using the statefinder diagnostic. Mon. Not. R. Astron. Soc. 344, 1057–1074 (2003)

    Article  Google Scholar 

  109. C.M. Chen, W.F. Kao, Stability analysis of anisotropic inflationary cosmology. Phys. Rev. D 64, 124019 (2001)

    Article  MathSciNet  Google Scholar 

  110. M. Sharif, M. Zubair, Energy conditions constraints and stability of power law solutions in \(f(R, T)\) gravity. J. Phys. Soc. Jpn. 82, 014002 (2013)

    Article  Google Scholar 

  111. P. Sahoo, S. Bhattacharjee, S.K. Tripathy, P.K. Sahoo, Bouncing scenario in \(f(R, T)\) gravity. Phys. Lett. A 35, 2050095 (2020)

    MathSciNet  MATH  Google Scholar 

  112. B. Saha, H. Amirhashchi, P. Anirudhan, Two-fluid scenario for dark energy models in an FRW universe-revisited. Astrophys. Space Sci. 342, 257–267 (2012)

    Article  Google Scholar 

  113. L.K. Sharma, A.K. Yadav, P.K. Sahoo, B.K. Singh, Non-minimal matter-geometry coupling in Bianchi I space-time. Results Phys. 10, 738 (2018)

    Article  Google Scholar 

  114. P.A.R. Ade et al., Planck 2015 results: \(XIII\) cosmological parameters. Astron. Astrophys. 594, A13 (2016)

    Article  Google Scholar 

  115. M. Tegmark et al., The three-dimensional power spectrum of galaxies from the Sloan digital sky survey. Astrophys. J. 606, 702 (2004)

    Article  Google Scholar 

  116. N. Aghanim, et al., Plancks Collaboration,Planck 2018 results. \(VI\). Cosmological parameters. arXiv:1807.06209v2 (2018)

Download references

Acknowledgements

The authors are thankful to Dr. K. Sri Kavya, MVGR College of Engineering, Vizianagaram for her valuable suggestions rendered during this work. Also, the author Vinutha Tummala would like to thank the authorities of the Inter-University Centre for Astronomy and Astrophysics, Pune, India, for providing the research facilities. The authors are much delighted to thank the honorable editor and anonymous reviewer for their valuable suggestions and useful comments which helped us a lot to improve this paper in terms of quality as well as presentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Vinutha.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Appendix

Appendix

$$\begin{aligned}{} & {} \iota _3=\frac{216\pi (-1+l)exp(-3\gamma _1t)\left( c_1exp(\gamma _1t)+c_2\gamma _1\right) \bigg (c_1^2exp(2\gamma _1t)(\delta \pi +\frac{\gamma _1^2}{9})+2\gamma _1c_2\pi \delta \bigg (c_1exp(\gamma _1t)+ \frac{c_2\gamma _1}{2}\bigg )\bigg )}{c^2\gamma _1^2c_1^3(2l+1)^2} \\{} & {} \iota _4=\frac{4\gamma _1c_2exp(-\gamma _1t) \bigg (c_1^2exp(2\gamma _1t)\bigg (\delta \pi +\frac{\gamma _1^2}{18}\bigg )+2\gamma _1c_2\pi \delta \bigg (c_1exp( \gamma _1t)+\frac{c_2\gamma _1}{2}\bigg )\bigg )}{c_1\bigg (c_1^2exp(2\gamma _1t)\bigg (\delta \pi +\frac{\gamma _1^2}{9}\bigg )+2\gamma _1c_2\pi \delta \bigg (c_1exp(\gamma _1t)+\frac{c_2\gamma _1}{2}\bigg )\bigg )} \\{} & {} \iota _5=-\frac{216\pi R(-1+l)exp(-3\gamma _1t)\bigg (c_1exp(\gamma _1t)+c_2\gamma _1\bigg )^3}{c^2\gamma _1^2c_1^3(2l+1)^2(\iota _7-1)} \\{} & {} \iota _6=-\frac{1}{(\iota _7-1)c_1\bigg (c_1^2exp(2\gamma _1t)\bigg (\delta \pi +\frac{\gamma _1^2}{9}\bigg )+2\gamma _1c_2 \pi \delta \bigg (c_1exp(\gamma _1t)+\frac{c_2\gamma _1}{2}\bigg )\bigg )}\\{} & {} \qquad 2\gamma _1c_2\bigg (\bigg (\pi c_2^2\gamma _1^2(R-2\delta )exp(-\gamma _1t)+c_1\bigg (c_1exp(\gamma _1t)\bigg ( \frac{-2\gamma _1^2}{9}+\pi (R-2\delta )\bigg )+2\pi \gamma _1c_2(R-2\delta )\bigg )\bigg )\iota _7\\{} & {} \qquad +2\pi c_2^2\delta \gamma _1^2exp(-\gamma _1t)+2c_1\bigg (c_1exp(\gamma _1t)\bigg (\delta \pi +\frac{\gamma _1^2}{9}\bigg )+2\gamma _1c_2\pi \delta \bigg )\bigg ) \\{} & {} \iota _7=\bigg (\frac{\big (9\pi exp(2\gamma _1t)c_1^2\delta +18\pi exp(\gamma _1t)c_1c_2\delta \gamma _1+9\pi c_2^2\delta \gamma _1^2+c_1^2exp(2\gamma _1t)\gamma _1^2\big )exp(-2\gamma _1t)}{c_1^2\gamma _1^2}\bigg )^{R/\delta } \end{aligned}$$

By using Eqs. (32), (37), (42), (45), (46), (47) and its derivatives in (50), we obtain the expressions for \(v_s^2\). The following equations (62), (63), (64) represent \(v_s^2\) for Tsallis, Renyi, Sharma–Mittal HDE models, respectively. These are as follows

$$\begin{gathered} v_{s}^{2} = \frac{{2\exp ( - \gamma _{1} t)}}{{\alpha c_{1}^{3} \gamma _{1}^{2} ( - 2 + \delta )\left( {l + \frac{1}{2}} \right)^{2} }}\left( {\frac{{ - 819^{{ - \delta }} ( - 1 + l)\exp ( - 2\gamma _{1} t)(c_{1} \exp (\gamma _{1} t) + c_{2} \gamma _{1} )^{3} (3H)^{{2\delta }} }}{{16}}} \right. \hfill \\ \left. {\quad \quad \, + \alpha c_{1}^{2} \gamma _{1}^{3} c_{2} ( - 2 + \delta )\left( {\delta - 32)\left( {l + \frac{1}{2}} \right)^{2} } \right)} \right) \hfill \\ \end{gathered}$$
(62)
$$\begin{aligned}{} & {} v_s^2=\frac{\iota _8}{\iota _9} \end{aligned}$$
(63)
$$\begin{aligned}{} & {} v_s^2= \frac{1}{\iota _{10}}\iota _{11} \end{aligned}$$
(64)

where

$$\begin{aligned} \iota _{8} & = - 3exp( - 3\gamma _{1} t)\left( {\gamma _{1} c_{1}^{6} \left( {\gamma _{1}^{6} \left( {\left( {\pi \left( {\frac{1}{{162}} - \frac{l}{{162}}} \right) + \frac{{c^{2} (l + \frac{1}{2})^{2} }}{{486}}} \right) + \frac{{\delta \pi \gamma _{1}^{4} \left( {\pi ( - 9l + 9) + c^{2} (l + \frac{1}{2})^{2} } \right)}}{{18}}} \right.} \right.} \right. \hfill \\ & \left. {\qquad + \delta ^{2} \pi ^{2} \gamma _{1}^{2} \left( {\left( {\frac{{15}}{2} - \frac{{15l}}{2}} \right)\pi + c^{2} \left( {l + \frac{1}{2}^{2} } \right)} \right) - \frac{{63\pi ^{4} \delta ^{3} ( - 1 + l)}}{2}} \right)c_{2} exp(6\gamma _{1} t) + \left( {6\gamma _{1}^{3} c_{1}^{4} \left( {\left( {\pi \left( { - \frac{l}{{36}} + \frac{1}{{36}}} \right)} \right.} \right.} \right. \hfill \\ & \left. {\left. {\qquad + \frac{{c^{2} \left( {l + \frac{1}{2}} \right)^{2} }}{{108}}} \right)\gamma _{1}^{4} + \delta \pi \gamma _{1}^{2} \left( {\pi \left( {\frac{{ - 5l}}{2} + \frac{5}{2}} \right) + c^{2} \left( {l + \frac{1}{2}} \right)^{2} } \right) - \frac{{105\pi ^{3} \delta ^{2} ( - 1 + l)}}{4}} \right)\delta c_{2}^{3} exp(4\gamma _{1} t) \hfill \\ & \left. {\qquad + 4\gamma _{1}^{2} \left( {\left( {\pi \left( { - \frac{l}{8} + \frac{1}{8}} \right) + \frac{{c^{2} \left( {l + \frac{1}{2}} \right)^{2} }}{{36}}} \right)\gamma _{1}^{4} + \delta \pi \gamma _{1}^{2} \left( {\pi \left( { - \frac{{15l}}{4} + \frac{{15}}{4}} \right) + c^{2} \left( {l + \frac{1}{2}} \right)^{2} } \right) - \frac{{189\pi ^{3} \delta ^{2} ( - 1 + l)}}{8}} \right)} \right) \hfill \\ & \qquad _{1}^{5} \delta c_{2}^{2} exp(5\gamma _{1} t) + \gamma _{1}^{5} c_{1}^{2} \left( {\left( {\pi \left( {\frac{3}{2} - \frac{{3l}}{2}} \right) + c^{2} (l + 1/2)^{2} } \right)\gamma _{1}^{2} - \frac{{189\delta \pi ^{2} ( - 1 + l)}}{2}} \right)\delta ^{2} \pi c_{2}^{5} exp(2\gamma _{1} t) \hfill \\ & \qquad - \frac{{9\left( {\delta \pi + \frac{{\gamma _{1}^{2} }}{9}} \right)^{3} c_{1}^{7} ( - 1 + l)exp(7\gamma _{1} t)}}{2} + 4\gamma _{1}^{4} \delta ^{2} \pi c_{2}^{4} \left( {c_{1}^{3} \left( {\left( {\pi \left( {\frac{{ - 15l}}{8} + \frac{{15}}{8}} \right) + c^{2} \left( {l + \frac{1}{2}} \right)^{2} } \right)\gamma _{1}^{2} } \right.} \right. \hfill \\ & \left. {\left. {\left. {\left. {\qquad - \frac{{315\delta \pi ^{2} ( - 1 + l)}}{8}} \right)exp(3\gamma _{1} t) - \frac{{63\gamma _{1}^{2} \left( {c_{1} exp(\gamma _{1} t) + \frac{{c_{2} \gamma _{1} }}{7}} \right)( - 1 + l)\delta \pi ^{2} c_{2}^{2} }}{8}} \right)} \right)\pi } \right) \hfill \\ \iota _{9} & = \gamma _{1}^{2} c^{2} c_{1}^{3} \left( {l + \frac{1}{2}} \right)^{2} \left( {c_{1}^{2} exp(2\gamma _{1} t)\left( {\delta \pi + \frac{{\gamma _{1}^{2} }}{9}} \right) + 2\gamma _{1} \delta \pi c_{2} \left( {c_{1} exp(\gamma _{1} t) + \frac{{c_{2} \gamma _{1} }}{2}} \right)} \right)\left( {c_{1}^{2} \left( {\delta \pi + \frac{{\gamma _{1}^{2} }}{{18}}} \right)exp(2\gamma _{1} t)} \right. \hfill \\ & \left. {\qquad + 2\gamma _{1} \left( {c_{1} exp(\gamma _{1} t) + \frac{{c_{2} \gamma _{1} }}{2}} \right)\delta \pi c_{2} } \right) \hfill \\ \iota _{{10}} & = 2c^{2} \left( {\frac{{c_{1}^{2} \left( {\delta \pi + \frac{{\gamma _{1}^{2} }}{9}} \right)exp(2\gamma _{1} t)}}{2} + \gamma _{1} (c_{1} exp(\gamma _{1} t) + \frac{{c_{2} \gamma _{1} }}{2})\delta \pi c_{2} } \right)\left( {l + \frac{1}{2}} \right)^{2} \gamma _{1}^{2} \left( {\frac{{c_{1}^{2} \left( {\frac{{ - 2\gamma _{1}^{2} }}{9} + \pi (R - 2\delta )} \right)exp(2\gamma _{1} t)}}{2}} \right. \hfill \\ & \left. {\left. {\qquad + \pi \gamma _{1} \left( {c_{1} exp(\gamma _{1} t) + \frac{{c_{2} \gamma _{1} }}{2}} \right)(R - 2\delta )c_{2} } \right)\iota _{7} + c_{1}^{2} \left( {\delta \pi + \frac{{\gamma _{1}^{2} }}{9}} \right)exp(2\gamma _{1} t) + 2\gamma _{1} \left( {c_{1} exp(\gamma _{1} t) + \frac{{c_{2} \gamma _{1} }}{2}} \right)\delta \pi c_{2} } \right) \hfill \\ \iota _{{11}} & = - \left( {\left( { - \left( {c_{1}^{4} exp(6\gamma _{1} t)\left( {\frac{{\gamma _{1}^{4} }}{{27}} - \frac{{5\pi \left( {R - \frac{{12\delta }}{5}} \right)\gamma _{1}^{2} }}{{18}} + \pi ^{2} (R - 2\delta )\left( {R - \frac{{3\delta }}{2}} \right)} \right) + \pi \left( {6\left( {\gamma _{1}^{2} \left( {\frac{{ - 5R}}{{108}} + \frac{\delta }{9}} \right)} \right.} \right.} \right.} \right.} \right. \hfill \\ & \left. {\qquad + \pi \left( {R - \frac{{3\delta }}{2}} \right)(R - 2\delta )} \right)\gamma _{1} c_{2} c_{1}^{2} exp(4\gamma _{1} t) + 4\left( {\gamma _{1}^{2} \left( {\frac{{ - 5R}}{{36}} + \frac{\delta }{3}} \right) + \pi (R - 2\delta )\left( {R - \frac{{3\delta }}{2}} \right)} \right)c_{1}^{3} exp(5\gamma _{1} t) \hfill \\ & \left. {\left. {\qquad + \left( {R - \frac{{3\delta }}{2}} \right)\pi \left( {exp(2\gamma _{1} t)c_{2} \gamma _{1} + 4c_{1} exp(3\gamma _{1} t)} \right)\gamma _{1}^{2} (R - 2\delta )c_{2}^{2} } \right)\gamma _{1} c_{2} } \right)c^{2} \left( {l + \frac{1}{2}} \right)^{2} \gamma _{1}^{3} c_{2} c_{1}^{2} \iota _{7} \hfill \\ & \qquad + \left( {\gamma _{1} c_{2} c_{1}^{6} exp(6\gamma _{1} t)\left( {\frac{{2c^{2} \gamma _{1}^{6} \left( {l + \frac{1}{2}} \right)^{2} }}{{27}} - \frac{{5\pi \gamma _{1}^{4} \left( {\frac{{ - 24\delta \left( {l + \frac{1}{2}} \right)^{2} c^{2} }}{5} + R\left( {c^{2} \left( {l + \frac{1}{2}} \right)^{2} - \frac{{9l}}{5} + \frac{9}{5}} \right)} \right)}}{{18}}} \right.} \right. \hfill \\ & \left. {\qquad + \pi ^{2} \left( {6c^{2} \left( {l + \frac{1}{2}} \right)^{2} \delta ^{2} - \frac{{7R\left( {c^{2} \left( {l + \frac{1}{2}} \right)^{2} - \frac{{30l}}{7} + \frac{{30}}{7}} \right)\delta }}{2} + R^{2} c^{2} \left( {l + \frac{1}{2}} \right)^{2} } \right)\gamma _{1}^{2} + \frac{{189\pi ^{3} R\delta ^{2} ( - 1 + l)}}{2}} \right) \hfill \\ & \qquad + \left( {6\gamma _{1}^{3} c_{2}^{3} \left( {\gamma _{1}^{4} \left( {\frac{{2\delta \left( {l + \frac{1}{2}} \right)^{2} c^{2} }}{9} - \frac{{5R\left( {c^{2} \left( {l + \frac{1}{2}} \right)^{2} - \frac{{3l}}{5} + \frac{3}{5}} \right)}}{{108}}} \right) + \left( {6c^{2} \left( {l + \frac{1}{2}} \right)^{2} \delta ^{2} } \right.} \right.} \right. \hfill \\ & \left. {\left. {\qquad - \frac{{7R\delta \left( {c^{2} \left( {l + \frac{1}{2}} \right)^{2} - \frac{{10l}}{7} + \frac{{10}}{7}} \right)}}{2} + R^{2} c^{2} \left( {l + \frac{1}{2}} \right)^{2} } \right)\pi \gamma _{1}^{2} + \frac{{315\pi ^{2} R\delta ^{2} ( - 1 + l)}}{4}} \right)c_{1}^{4} exp(4\gamma _{1} t) \hfill \\ &\qquad + 4\left( {\gamma _{1}^{4} \left( {\frac{{2\delta \left( {l + \frac{1}{2}} \right)^{2} c^{2} }}{3} - \frac{{5R\left( {c^{2} (l + 1/2)^{2} - \frac{{9l}}{{10}} + \frac{9}{{10}}} \right)}}{{36}}} \right) + \pi \left( {6c^{2} \left( {l + \frac{1}{2}} \right)^{2} \delta ^{2} } \right.} \right. \hfill \\ & \left. {\left. {\qquad - \frac{{7R\left( {c^{2} \left( {l + \frac{1}{2}} \right)^{2} - \frac{{15l}}{7} + \frac{{15}}{7}} \right)\delta }}{2} + R^{2} c^{2} \left( {l + \frac{1}{2}} \right)^{2} } \right)\gamma _{1}^{2} + \frac{{567\pi ^{2} R\delta ^{2} ( - 1 + l)}}{8}} \right)\gamma _{1}^{2} c_{2}^{2} c_{1}^{5} exp(5\gamma _{1} t) \hfill \\ & \qquad + \left( {\left( {6c^{2} \left( {l + \frac{1}{2}} \right)^{2} \delta ^{2} - \frac{{7\left( {c^{2} \left( {l + \frac{1}{2}} \right)^{2} - \frac{{6l}}{7} + \frac{6}{7}} \right)R\delta }}{2} + R^{2} c^{2} \left( {l + \frac{1}{2}} \right)^{2} } \right)\gamma _{1}^{2} + \frac{{567\pi R\delta ^{2} ( - 1 + l)}}{2}} \right)\pi \gamma _{1}^{5} c_{2}^{5} c_{1}^{2} \hfill \\ & \qquad exp(2\gamma _{1} t) + 4\pi \gamma _{1}^{4} c_{2}^{4} c_{1}^{3} exp(3\gamma _{1} t)\gamma _{1}^{2} \left( {6c^{2} \left( {l + \frac{1}{2}} \right)^{2} \delta ^{2} - \frac{{7R\left( {c^{2} \left( {l + \frac{1}{2}} \right)^{2} - \frac{{15l}}{{14}} + \frac{{15}}{{14}}} \right)\delta }}{2} + R^{2} c^{2} \left( {l + \frac{1}{2}} \right)^{2} } \right) \hfill \\ & \qquad \left. {\left. {\left. { + \frac{{945\pi R\delta ^{2} ( - 1 + l)}}{8}} \right) + \frac{{189( - 1 + l)R\left( {\frac{{\left( {\delta \pi + \frac{{\gamma _{1}^{2} }}{9}} \right)^{2} c_{1}^{7} exp(7\gamma _{1} t)}}{7} + \pi ^{2} c_{2}^{6} \delta ^{2} \gamma _{1}^{6} \left( {c_{1} exp\gamma _{1} t + \frac{{c2\gamma _{1} }}{7}} \right)} \right)}}{2}} \right)\pi } \right)\iota _{7} \hfill \\ & \qquad - \frac{1}{2}\left( {189\gamma _{1} \left( {\delta \pi + \frac{{\gamma _{1}^{2} }}{9}} \right)c_{2} c_{1}^{6} exp(6\gamma _{1} t)\left( {\frac{{(2c^{2} (l + \frac{1}{2})^{2} \gamma _{1}^{4} )}}{{567}} + \frac{{\pi \gamma _{1}^{2} \left( {\frac{{2\delta \left( {l + \frac{1}{2}} \right)^{2} c^{2} }}{3} + R( - 1 + l)} \right)}}{{21}} + \pi ^{2} R\delta ( - 1 + l)} \right)} \right) \hfill \\ & \qquad - \frac{1}{2}189\pi \left( {5\left( {\gamma _{1}^{4} \left( {\frac{{4\delta \left( {l + \frac{1}{2}} \right)^{2} c^{2} }}{{2835}} + \frac{{R( - 1 + l)}}{{2835}}} \right) + \frac{{4\delta \left( {\frac{{3\delta \left( {l + \frac{1}{2}} \right)^{2} c^{2} }}{5} + R( - 1 + l)} \right)\pi \gamma _{1}^{2} }}{{63}} + \pi ^{2} R\delta ^{2} } \right.} \right. \hfill \\ & \qquad \left. {( - 1 + l)} \right)\gamma _{1}^{3} c_{2}^{3} c_{1}^{4} exp(4\gamma _{1} t) + 3\gamma _{1}^{2} c_{2}^{2} c_{1}^{5} exp(5\gamma _{1} t)\left( {\gamma _{1}^{4} \left( {\frac{{8\delta \left( {l + \frac{1}{2}} \right)^{2} c^{2} }}{{1701}} + \frac{{R( - 1 + l)}}{{567}}} \right)} \right. \hfill \\ & \left. {\qquad + \frac{{20\delta \pi \left( {\frac{{2\delta \left( {l + \frac{1}{2}} \right)^{2} c^{2} }}{5} + R( - 1 + l)} \right)\gamma _{1}^{2} }}{{189}} + \pi ^{2} R\delta ^{2} ( - 1 + l)} \right) + 3\delta \pi \gamma _{1}^{5} c_{2}^{5} c_{1}^{2} exp(2\gamma _{1} t) \hfill \\ & \qquad \left( {\gamma _{1}^{2} \left( {\frac{{2\delta \left( {l + \frac{1}{2}} \right)^{2} c^{2} }}{{189}} + \frac{{2R( - 1 + l)}}{{189}}} \right) + \pi R\delta ( - 1 + l)} \right) + 5\delta \pi \gamma _{1}^{4} c_{2}^{4} c_{1}^{3} \hfill \\ & \qquad \left( {\gamma _{1}^{2} \left( {\frac{{8\delta \left( {l + \frac{1}{2}} \right)^{2} c^{2} }}{{315}} + \frac{{2R( - 1 + l)}}{{63}}} \right) + \pi R\delta ( - 1 + l)} \right)exp(3\gamma _{1} t) + ( - 1 + l)R \hfill \\ & \qquad \left. {\left. {\left. {\left. {\frac{{\left( {\delta \pi + \frac{{\gamma _{1}^{2} }}{9}} \right)^{2} c_{1}^{7} exp(7\gamma _{1} t)}}{7} + \pi ^{2} c_{2}^{6} \delta ^{2} \gamma _{1}^{6} \left( {c_{1} exp(\gamma _{1} t) + \frac{{c_{2} \gamma _{1} }}{7}} \right)} \right)} \right)} \right)} \right)exp( - 3\gamma _{1} t) \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vinutha, T., Vasavi, K.V. The study of accelerating DE models in Saez–Ballester theory of gravitation. Eur. Phys. J. Plus 137, 1294 (2022). https://doi.org/10.1140/epjp/s13360-022-03477-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-03477-x

Navigation