Skip to main content

Advertisement

Log in

Pressure, temperature and electric field effects on the photoionization cross section in a multilayered spherical quantum dot

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this paper, within the effective mass approximation and by using the finite element method, we have studied the photoionization cross section (PCS) and the binding energy of a hydrogenic shallow donor impurity confined in multilayered spherical quantum dot under the effects of temperature, pressure and electric field. Furthermore, the dependence of the donor binding energy and photoionization cross section on the dielectric mismatch and the potential of the outer barrier have been investigated. Our numerical results reveal that the binding energy increases (decreases) with the pressure (temperature and electric field). Furthermore, it is found that as the pressure (temperature and electric field) increases, the position of the PCS peak shifts to the higher (lower) energies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

No data associated in the manuscript.

References

  1. V.N. Mughnetsyan, M.G. Barseghyan, A.A. Kirakosyan, Magnetic field effect on photoionization cross-section of hydrogen-like impurity in cylindrical quantum wire. Physica E 40, 654–659 (2008). https://doi.org/10.1016/j.physe.2007.08.156

    Article  ADS  Google Scholar 

  2. S.G. Jayam, K. Navaneethakrishnan, Photoionization of donor impurities in quantum wells in an electric field. Solid State Commun. 122, 433–438 (2002). https://doi.org/10.1016/S0038-1098(02)00155-2

    Article  ADS  Google Scholar 

  3. A.M. Elabsy, Band mixing dependence of the lowest energy states in uncoupled quantum wells. Superlattices Microstruct. 14, 65 (1993). https://doi.org/10.1006/spmi.1993.1104

    Article  ADS  Google Scholar 

  4. V.N. Mughnetsyan, M.G. Barseghyan, A.A. Kirakosyan, Binding energy and photoionization cross section of hydrogen-like donor impurity in quantum well-wire in electric and magnetic fields. Superlattices Microstruct. 44, 86–95 (2008). https://doi.org/10.1016/j.spmi.2008.02.009

    Article  ADS  Google Scholar 

  5. M. El-Said, M. Tomak, Photoionization of impurities in quantum wells. Solid State Commun. 82, 721–723 (1992). https://doi.org/10.1016/0038-1098(92)90068-K

    Article  ADS  Google Scholar 

  6. A. Sali, M. Fliyou, L. Roubi, H. Loumrhari, The effect of a strong magnetic field on the binding energy and the photoionization cross-section in a quantum well. J. Phys. Condens. Matter 11, 2427–2436 (1999). https://doi.org/10.1088/0953-8984/11/11/013

    Article  ADS  Google Scholar 

  7. A. Sali, M. Fliyou, H. Loumrhari, Photoionization of shallow donor impurities in finite-barrier quantum-well wires. Physica B 233, 196–200 (1997). https://doi.org/10.1016/S0921-4526(97)00305-0

    Article  ADS  Google Scholar 

  8. A. Sali, M. Fliyou, H. Satori, H. Loumrhari, The effect of a strong magnetic field on the binding energy and the photoionization process in quantum-well wires. J. Phys. Chem. Solids (2003). https://doi.org/10.1016/S0022-3697(02)00205-6

    Article  Google Scholar 

  9. M. Jaouane, A. Sali, A. Fakkahi, R. Arraoui, F. Ungan, The effects of temperature and pressure on the optical properties of a donor impurity in (In, Ga)N/GaN multilayer cylindrical quantum dots. Superlattices Microstruct. (2022). https://doi.org/10.1016/j.spmi.2021.107146

    Article  Google Scholar 

  10. A. Fakkahi, A. Sali, M. Jaouane, R. Arraoui, A. Ed-Dahmouny, Study of photoionization cross section and binding energy of shallow donor impurity in multilayered spherical quantum dot. Phys. E Low-Dimens. Syst. Nanostruct. (2022). https://doi.org/10.1016/j.physe.2022.115351

    Article  Google Scholar 

  11. A. Sali, H. Satori, M. Fliyou, H. Loumrhari, The photoionization cross-section of impurities in quantum dots. Phys. Stat. Sol. (b) 232, 209–219 (2002). https://doi.org/10.1002/1521-3951(200208)232:2%3c209::AID-PSSB209%3e3.0.CO;2-O

    Article  ADS  Google Scholar 

  12. A. Sali, M. Fliyou, H. Loumrhari, The effect of the electron-longitudinal optical phonons interaction on the photoionization in a quantum well. J. Phys. Chem. Solids 59, 625–632 (1998). https://doi.org/10.1016/S0022-3697(97)00235-7

    Article  ADS  Google Scholar 

  13. A. Sali, M. Fliyou, H. Loumrhari, The effect of the electron-longitudinal optical phonon interaction on the photoionization in quantum well wires. Phys. Stat. Sol. (b) 200, 145–153 (1997). https://doi.org/10.1002/1521-3951(199703)200:1%3c145::AID-PSSB145%3e3.0.CO;2-7

    Article  ADS  Google Scholar 

  14. V. Holovatsky, M. Chubrei, O. Yurchenko, Impurity photoionization cross-section and intersubband optical absorption coefficient in multilayer spherical quantum dots. Phys. Chem. Solid State 22, 630–637 (2021). https://doi.org/10.15330/pcss.22.4.630-637

    Article  Google Scholar 

  15. A.M. Elabsy, Effect of the Gamma-X crossover on the binding energies of confined donors in single GaAs/AlxGa1−xAs quantum-well microstructures. J. Phys. Condens. Matter. 6, 10025–10030 (1994). https://doi.org/10.1088/0953-8984/6/46/019

    Article  ADS  Google Scholar 

  16. M.E. Mora-Ramos, C.A. Duque, Electronic states in n-type GaAs delta-doped quantum wells under hydrostatic pressure. Braz. J. Phys. 36, 866–868 (2006). https://doi.org/10.1590/S0103-97332006000600018

    Article  ADS  Google Scholar 

  17. C.A. Duque, S.Y. López, M.E. Mora-Ramos, Hydrostatic pressure effects on the Γ-X conduction band mixing and the binding energy of a donor impurity in GaAs–Ga1–xAlxAs quantum wells. Phys. Stat. Sol. (b) 244, 1964–1970 (2007). https://doi.org/10.1002/pssb.200642377

    Article  ADS  Google Scholar 

  18. M.E. Mora-Ramos, A.H. Rodriguez, S.Y. Lopez, C.A. Duque, Hydrostatic pressure and magnetic field effects on the exciton states in vertically coupled GaAs-(Ga, Al)As quantum dots. PIERS Online 4, 263–266 (2008). https://doi.org/10.2529/PIERS071004154732

    Article  Google Scholar 

  19. J.C. Martínez-Orozco, I. Rodríguez-Vargas, C.A. Duque, M.E. Mora-Ramos, L.M. Gaggero-Sager, Study of the electronic properties of GaAs-based atomic layer doped field effect transistor (ALD-FET) under the influence of hydrostatic pressure. Phys. Stat. Sol. (b) 246, 581–585 (2009). https://doi.org/10.1002/pssb.200880530

    Article  ADS  Google Scholar 

  20. O. Oubram, M.E. Mora-Ramos, L.M. Gaggero-Sager, Effect of the hydrostatic pressure on the electron mobility in delta-doped systems. J. Phys. Conf. Ser. 167, 012031 (2009). https://doi.org/10.1088/1742-6596/167/1/012031

    Article  Google Scholar 

  21. S.Y. López, N. Porras-Montenegro, C.A. Duque, Hydrostatic pressure effects on donor-related absorption spectra in GaAs–Ga1−xAlxAs quantum wells. Physica B 362, 41–49 (2005). https://doi.org/10.1016/j.physb.2005.01.473

    Article  ADS  Google Scholar 

  22. S.Y. Lpez, N. Porras-Montenegro, C.A. Duque, Binding energy and density of shallow impurity states in GaAs–(Ga, Al)As quantum wells: effects of an applied hydrostatic stress. Semicond. Sci. Technol. 18, 718–722 (2003). https://doi.org/10.1088/0268-1242/18/7/322

    Article  ADS  Google Scholar 

  23. A. John Peter, K. Navaneethakrishnan, Simultaneous effects of pressure and temperature on donors in a GaAlAs/GaAs quantum well. Superlattices Microstruct. 43, 63–71 (2008). https://doi.org/10.1016/j.spmi.2007.06.007

    Article  ADS  Google Scholar 

  24. E. Kasapoglu, The hydrostatic pressure and temperature effects on donor impurities in GaAs/Ga1−xAlxAs double quantum well under the external fields. Phys. Lett. A 373, 140–143 (2008). https://doi.org/10.1016/j.physleta.2008.10.080

    Article  ADS  Google Scholar 

  25. N. Raigoza, A.L. Morales, A. Montes, N. Porras-Montenegro, C.A. Duque, Stress effects on shallow-donor impurity states in symmetrical GaAs/AlxGa1−xAs double quantum wells. Phys. Rev. B 69, 045323 (2004). https://doi.org/10.1103/PhysRevB.69.045323

    Article  ADS  Google Scholar 

  26. A. Hakimyfard, M.G. Barseghyan, A.A. Kirakosyan, Simultaneous effects of pressure and magnetic field on intersubband optical transitions in Pöschl-Teller quantum well. Physica E 41, 1596–1599 (2009). https://doi.org/10.1016/j.physe.2009.05.008

    Article  ADS  Google Scholar 

  27. A. Hakimyfard, M.G. Barseghyan, C.A. Duque, A.A. Kirakosyan, Simultaneous effects of pressure and temperature on donor binding energy in Pöschl-Teller quantum well. Physica B 404, 5159–5162 (2009). https://doi.org/10.1016/j.physb.2009.08.293

    Article  ADS  Google Scholar 

  28. R. Arraoui, A. Sali, A. Ed-Dahmouny, M. Jaouane, A. Fakkahi, Polaronic mass and non-parabolicity effects on the photoionization cross section of an impurity in a double quantum dot. Superlattices Microstruct. 159, 107049 (2021). https://doi.org/10.1016/j.spmi.2021.107049

    Article  Google Scholar 

  29. K. El-Bakkari, A. Sali, E. Iqraoun, A. Rezzouk, N. Es-Sbai, M. Ouazzani Jamil, Effects of the temperature and pressure on the electronic and optical properties of an exciton in GaAs/Ga1−xAlxAs quantum ring. Phys. B Condens. Matter 538, 85–94 (2018). https://doi.org/10.1016/j.physb.2018.03.010

    Article  ADS  Google Scholar 

  30. M. Jaouane, A. Sali, A. Ezzarfi, A. Fakkahi, R. Arraoui, Study of hydrostatic pressure, electric and magnetic fields effects on the donor binding energy in multilayer cylindrical quantum dots. Physica E 127, 114543 (2021). https://doi.org/10.1016/j.physe.2020.114543

    Article  Google Scholar 

  31. M.G. Barseghyan, A. Hakimyfard, S.Y. López, C.A. Duque, A.A. Kirakosyan, Simultaneous effects of hydrostatic pressure and temperature on donor binding energy and photoionization cross section in Pöschl-Teller quantum well. Physica E 42, 1618–1622 (2010). https://doi.org/10.1016/j.physe.2010.01.008

    Article  ADS  Google Scholar 

  32. U. Yesilgul, Donor impurity-related photoionization cross-section in parabolic quantum wires: effects of intense laser field and applied electric field. Physica E 74, 34–38 (2015). https://doi.org/10.1016/j.physe.2015.06.021

    Article  ADS  Google Scholar 

  33. H.M. Baghramyan, M.G. Barseghyan, A.A. Kirakosyan, D. Laroze, C.A. Duque, Donor-impurity related photoionization cross section in GaAs/Ga1−xAlxAs concentric double quantum rings: Effects of geometry and hydrostatic pressure. Physica B 449, 193–198 (2014). https://doi.org/10.1016/j.physb.2014.05.034

    Article  ADS  Google Scholar 

  34. S. Liang, W. Xie, X. Li, H. Shen, Photoionization and binding energy of a donor impurity in a quantum dot under an electric field: Effects of the hydrostatic pressure and temperature. Superlattices Microstruct. 49, 623–631 (2011). https://doi.org/10.1016/j.spmi.2011.03.013

    Article  ADS  Google Scholar 

  35. S. Ortakaya, M. Kirak, Hydrostatic pressure and temperature effects on the binding energy and optical absorption of a multilayered quantum dot with a parabolic confinement. Chinese Phys. B. 25, 127302 (2016). https://doi.org/10.1088/1674-1056/25/12/127302

    Article  ADS  Google Scholar 

  36. A. Fakkahi, A. Sali, M. Jaouane, R. Arraoui, Hydrostatic pressure, temperature, and electric field effects on the hydrogenic impurity binding energy in a multilayered spherical quantum dot. Appl. Phys. A 127, 908 (2021). https://doi.org/10.1007/s00339-021-05055-x

    Article  ADS  Google Scholar 

  37. M. Şahin, F. Tek, A. Erdinç, The photoionization cross section of a hydrogenic impurity in a multi-layered spherical quantum dot. J. Appl. Phys. 111, 084317 (2012). https://doi.org/10.1063/1.4705410

    Article  ADS  Google Scholar 

  38. A. Sali, M. Fliyou, H. Satori, H. Loumrhari, Photoionization of impurities in quantum-well wires. Phys. Stat. Sol. (b) 211, 661–670 (1999). https://doi.org/10.1002/(SICI)1521-3951(199902)211:2%3c661::AID-PSSB661%3e3.0.CO;2-Q

    Article  ADS  Google Scholar 

  39. V. Holovatsky, M. Chubrey, O. Voitsekhivska, Effect of electric field on photoionisation cross-section of impurity in multilayered quantum dot. Superlattices Microstruct. 145, 106642 (2020). https://doi.org/10.1016/j.spmi.2020.106642

    Article  Google Scholar 

  40. L.M. Burileanu, Photoionization cross-section of donor impurity in spherical quantum dots under electric and intense laser fields. J. Lumin. 145, 684–689 (2014). https://doi.org/10.1016/j.jlumin.2013.08.043

    Article  Google Scholar 

  41. S. M’zerd, M. El Haouari, M. Aghoutane, M. El-Yadri, E. Feddi, F. Dujardin, I. Zorkani, A. Jorio, M. Sadoqi, G. Long, Electric field effect on the photoionization cross section of a single dopant in a strained AlAs/GaAs spherical core/shell quantum dot. J. Appl. Phys. 124, 164303 (2018). https://doi.org/10.1063/1.5046859

    Article  ADS  Google Scholar 

  42. V.A. Holovatsky, M.Y. Yakhnevych, O.M. Voitsekhivska, Optical properties of GaAs/AlxGa1−xAs/GaAs quantum dot with off-central impurity driven by electric field. Condens. Matter Phys. 21, 13703 (2018). https://doi.org/10.5488/CMP.21.13703

    Article  Google Scholar 

  43. E.C. Niculescu, Dielectric mismatch effect on the photoionization cross section and intersublevel transitions in GaAs nanodots. Opt. Commun. 284, 3298–3303 (2011). https://doi.org/10.1016/j.optcom.2011.02.071

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

AF and HD worked on the following: drafting the manuscript, conceptualization, acquisition of data, formal analysis, revising the manuscript critically for important intellectual content, and approval of the version of the manuscript to be published. AS: proposed the problem and worked on conceptualization, acquisition of data, formal analysis, drafting the manuscript, revising the manuscript critically for important intellectual content, and Approval of the version of the manuscript to be published. MJ, RA, KE, and AE worked on conceptualization, formal analysis, and approval of the version of the manuscript to be published.

Corresponding author

Correspondence to A. Fakkahi.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fakkahi, A., Dakhlaoui, H., Sali, A. et al. Pressure, temperature and electric field effects on the photoionization cross section in a multilayered spherical quantum dot. Eur. Phys. J. Plus 137, 1244 (2022). https://doi.org/10.1140/epjp/s13360-022-03462-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-03462-4

Navigation