Skip to main content

Advertisement

Log in

Hydrostatic pressure, temperature, and electric field effects on the hydrogenic impurity binding energy in a multilayered spherical quantum dot

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Within the effective mass and the parabolic band approximations, the binding energy of an on-center shallow donor impurity in a \(\mathrm{GaAs}/{\mathrm{Ga}}_{1-x}{\mathrm{Al}}_{x}\mathrm{As}\) multilayered spherical quantum dot has been studied by using the Finite Element Method (FEM). The ground state energy is calculated as a function of the barrier width and inner dot radius for different values of the confinement potential height. Our numerical results exhibit that the binding energy depends strongly on the width of the structure layers. In addition, we have investigated the effect of pressure, temperature, and electric field on the shallow donor binding energy. The calculations showed that the pressure yielded a significant improvement in the binding energy, especially for small inner dot radii. We have also remarked that the presence of temperature leads to a decrease in the binding energy, and the electric field produces a significant effect on the binding energy except for small barrier widths, where the coupling effect between the dots is the most dominant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. S. Ortakaya, M. Kirak, Chin. Phys. B 25, 127302 (2016).

  2. H. Panahi, S. Golshahi, M. Doostdar, Phys. B Condens. Matter 418, 47 (2013)

    Article  ADS  Google Scholar 

  3. H. Panahi, M. Maleki, Phys. Status Solidi B 245, 967 (2008)

    Article  ADS  Google Scholar 

  4. K. El-Bakkari, A. Sali, E. Iqraoun, A. Azzerfi, Superlattices Microstruct. 148, 106729 (2020).

  5. H. Satori, A. Sali, K. Satori, Phys. E Low-Dimens. Syst. Nanostructures 14, 184 (2002)

    Article  ADS  Google Scholar 

  6. A. Sali, A. Rezzouk, N. Es-Sbai, M.O. Jamil, Indian J. Pure Appl. Phys. 57, 483 (2019)

    Google Scholar 

  7. H. Satori, A. Sali, Phys. E 48, 171 (2013)

    Article  Google Scholar 

  8. E. Iqraoun, A. Sali, K. El-Bakkari, A. Ezzarfi, M. E. Mora-Ramos, C. A. Duque, Phys. Scr. 96, 065808 (2021).

  9. S. T. Perez-Merchancano, H. Paredes-Gutierrez, J. Silva-Valencia, J. Phys. Condens. Matter 19, 026225 (2007).

  10. S. Akgül, M. Şahin, K. Köksal, J. Lumin. 132, 1705 (2012)

    Article  Google Scholar 

  11. G.J. Zhao, X.X. Liang, S.L. Ban, Phys. Lett. A 319, 191 (2003)

    Article  ADS  Google Scholar 

  12. H.M. Baghramyan, M.G. Barseghyan, A.A. Kirakosyan, R.L. Restrepo, M.E. Mora-Ramos, C.A. Duque, J. Lumin. 145, 676 (2014)

    Article  Google Scholar 

  13. C.-Y. Hsieh, D.-S. Chuu, C.-Y. Hsieh, J. Phys. Condens. Matter 12, 8641 (2000)

    Article  ADS  Google Scholar 

  14. A. Rejo Jeice, Sr. Gerardin Jayam, K. S. Joseph Wilson, Chin. Phys. B 24, 110303 (2015).

  15. G. Murillo, N. Porras-Montenegro, Phys. Status Solidi B 220, 187 (2000)

    Article  ADS  Google Scholar 

  16. Ş Aktaş, S.E. Okan, H. Akbaş, Superlattices Microstruct. 30, 129 (2001)

    Article  ADS  Google Scholar 

  17. I.F.I. Mikhail, S.B.A. El Sayed, Phys. E Low-Dimens. Syst. Nanostructures 43, 1371 (2011)

    Article  ADS  Google Scholar 

  18. F.K. Boz, S. Aktas, A. Bilekkaya, S.E. Okan, Appl. Surf. Sci. 255, 6561 (2009)

    Article  ADS  Google Scholar 

  19. G. Wang, X. Duan, R. Zhou, Adv. Condens. Matter Phys. 2015, 1 (2015)

    Google Scholar 

  20. A. El Moussaouy, D. Bria, A. Nougaoui, Phys. B Condens. Matter 370, 178 (2005)

    Article  ADS  Google Scholar 

  21. M.J. Karimi, G. Rezaei, M. Nazari, J. Lumin. 145, 55 (2014)

    Article  Google Scholar 

  22. S. T. Perez-Merchancano, L. E. Bolivar-Marinez, J. Silva-Valencia, Rev. Mex. FI´SICA 53, 470 (2007).

  23. S. Aktas, F.K. Boz, Phys. E Low-Dimens. Syst. Nanostructures 40, 753 (2008)

    Article  ADS  Google Scholar 

  24. F.K. Boz, S. Aktas, A. Bilekkaya, S.E. Okan, Appl. Surf. Sci. 256, 3832 (2010)

    Article  ADS  Google Scholar 

  25. M. Şahin, F. Tek, A. Erdinç, J. Appl. Phys. 111, 084317 (2012).

  26. G.W. Bryant, Phys. Rev. B 29, 6632 (1984)

    Article  ADS  Google Scholar 

  27. M. Jaouane, A. Sali, A. Ezzarfi, A. Fakkahi, R. Arraoui, Phys. E Low-Dimens. Syst. Nanostructures 127, 114543 (2021).

  28. B.V. Shanabrook, Phys. BC 146, 121 (1987)

    Google Scholar 

  29. M. Aghajanian, B. Schuler, K. A. Cochrane, J.-H. Lee, C. Kastl, J. B. Neaton, A. Weber-Bargioni, A. A. Mostofi, and J. Lischner, Phys. Rev. B 101, 081201 (2020).

  30. R. N. Pereira, A. J. Almeida, A. R. Stegner, M. S. Brandt, H. Wiggers, Phys. Rev. Lett. 108, 126806 (2012).

  31. S. O. Krüger, H. Stolz, S. Scheel, Phys. Rev. B 101, 235204 (2020).

  32. S. Perraud, K. Kanisawa, Z.-Z. Wang, T. Fujisawa, Phys. Rev. Lett. 100, 056806 (2008).

  33. E. Kasapoglu, Phys. Lett. A 373, 140 (2008)

    Article  ADS  Google Scholar 

  34. Y. Naimi, A.R. Jafari, J. Comput. Electron. 13, 666 (2014)

    Article  Google Scholar 

  35. A. Sali, j Kharbach, A. Rezzouk, M. O. Jamil, Superlattices Microstruct. 104, 93 (2017).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Fakkahi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fakkahi, A., Sali, A., Jaouane, M. et al. Hydrostatic pressure, temperature, and electric field effects on the hydrogenic impurity binding energy in a multilayered spherical quantum dot. Appl. Phys. A 127, 908 (2021). https://doi.org/10.1007/s00339-021-05055-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-05055-x

Keywords

Navigation