Skip to main content
Log in

Central pressure-dependent compact anisotropic stellar model and its tidal Love number

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We develop an anisotropic compact stellar model by assuming a Buchdahl ansazt (Phys. Rev. 116: 1027–1034, 1959)-type metric potential and a particular radial pressure profile. We analyse the tidal behaviours of such class of compact stars by estimating their tidal Love Numbers (TLN). In particular, we find a relationship between the TLN and the central density of the configuration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Data Availability

No data are associated in the manuscript.

References

  1. J.R. Oppenheimer, G.M. Volkoff, On massive neutron cores. Phys. Rev. 55(4), 374 (1939)

    Article  ADS  MATH  Google Scholar 

  2. R.C. Tolman, Static solutions of Einstein’s field equations for spheres of fluid. Phys. Rev. 55(4), 364 (1939)

    Article  ADS  MATH  Google Scholar 

  3. A. Hewish, S.J. Bell , J.D. Pilkington, P.F. Scott, R.A. Collins, 74. Observation of a Rapidly Pulsating Radio Source. In: A Source Book in Astronomy and Astrophysics, 1900–1975. Harvard University Press 498–504 (2013)

  4. T.E. Riley, A.L. Watts, S. Bogdanov, P.S. Ray, R.M. Ludlam, S. Guillot et al., A NICER view of PSR J0030+ 0451: Millisecond pulsar parameter estimation. Astrophys. J. Lett. 887(1), L21 (2019)

    Article  ADS  Google Scholar 

  5. R.F. Sawyer, Condensed \(\pi \)- phase in neutron-star matter. Phys. Rev. Lett. 29(6), 382 (1972)

    Article  ADS  Google Scholar 

  6. M. Ruderman, Pulsars: structure and dynamics. Ann. Rev. Astron. Astrophys. 10(1), 427–476 (1972)

    Article  ADS  Google Scholar 

  7. V. Canuto, Equation of state at ultrahigh densities. Ann. Rev. Astron. Astrophys. 12(1), 167–214 (1974)

    Article  ADS  Google Scholar 

  8. R. Kippenhahn, A. Weigert, A. Weiss, Stellar structure and evolution. 192. Springer (1990)

  9. L. Herrera, N. Santos, Jeans mass for anisotropic matter. Astrophys. J. 438, 308–313 (1995)

    Article  ADS  Google Scholar 

  10. P.S. Letelier, Anisotropic fluids with two-perfect-fluid components. Phys. Rev. D. 22(4), 807 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  11. A. Sokolov, Phase transformations in a superfluid neutron liquid. Zhurnal Ehksperimental’noj i Teoreticheskoj Fiziki. 49(4), 1137–1140 (1980)

    Google Scholar 

  12. V.V. Usov, Electric fields at the quark surface of strange stars in the color-flavor locked phase. Phys. Rev. D 70(6), 067301 (2004)

    Article  ADS  Google Scholar 

  13. F.E. Schunck, E.W. Mielke, General relativistic boson stars. Class. Quantum Gravity 20(20), R301 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. M.S. Morris, K.S. Thorne, Wormholes in spacetime and their use for interstellar travel: a tool for teaching general relativity. Am. J. Phys. 56(5), 395–412 (1988)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. A. DeBenedictis, D. Horvat, S. Ilijić, S. Kloster, K. Viswanathan, Gravastar solutions with continuous pressures and equation of state. Class. Quantum Gravity 23(7), 2303 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. R.L. Bowers, E. Liang, Anisotropic spheres in general relativity. Astrophys. J. 188, 657 (1974)

    Article  ADS  Google Scholar 

  17. L. Herrera, N.O. Santos, Local anisotropy in self-gravitating systems. Phys. Rep. 286(2), 53–130 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  18. E. Witten, Cosmic separation of phases. Phys. Rev. D. 30(2), 272 (1984)

    Article  ADS  Google Scholar 

  19. NK. Glendenning, Compact Stars: Nuclear Physics. Particle Physics, and General Relativity (2000)

  20. S.L. Shapiro, S.A. Teukolsky, B. Holes, W. Dwarfs, N. Stars, The physics of compact objects. Wiley, New York. 19832, 119–123 (1983)

  21. F. Weber, Pulsars as Astrophysical Laboratories for Nuclear and Particle Physics (Routledge, London, 2017)

    Book  Google Scholar 

  22. P. Vaidya, R. Tikekar, Exact relativistic model for a superdense star. J. Astrophys. Astron. 3(3), 325–334 (1982)

    Article  ADS  Google Scholar 

  23. M.R. Finch, J.E. Skea, A realistic stellar model based on an ansatz of Duorah and Ray. Class. Quantum Gravity 6(4), 467 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  24. R. Sharma, Mukherjee, S2002MPLA. 17.2535 S. Mod. Phys. Lett. A. 17, 2535 (2002)

  25. V. Thomas, B. Ratanpal, P. Vinodkumar, Equation of State for anisotropic spheres. Int. J. Mod. Phys. D 14, 85 (2005)

    Article  ADS  MATH  Google Scholar 

  26. R. Tikekar, V. Thomas, A relativistic core-envelope model on pseudospheroidal space-time. Pramana 64(1), 5–15 (2005)

    Article  ADS  Google Scholar 

  27. R. Sharma, S. Maharaj, A class of relativistic stars with a linear equation of state. Mon. Not. R. Astron. Soc. 375(4), 1265–1268 (2007)

    Article  ADS  Google Scholar 

  28. S. Karmakar, S. Mukherjee, R. Sharma, S. Maharaj, The role of pressure anisotropy on the maximum mass of cold compact stars. Pramana 68(6), 881–889 (2007)

    Article  ADS  Google Scholar 

  29. R. Sharma, S. Mukherjee, HER X-1: A QUARK-DIQUARK STAR? Mod. Phys. Lett. A 16(16), 1049–1059 (2001)

    Article  ADS  MATH  Google Scholar 

  30. R. Sharma, B. Ratanpal, Relativistic stellar model admitting a quadratic equation of state. Int. J. Modern Phys. D 22(13), 1350074 (2013)

    Article  ADS  MATH  Google Scholar 

  31. B.P. Abbott, R. Abbott, T. Abbott, F. Acernese, K. Ackley, C. Adams et al., GW170817: observation of gravitational waves from a binary neutron star inspiral. Phys. Rev. Lett. 119(16), 161101 (2017)

    Article  ADS  Google Scholar 

  32. B. Abbott, R. Abbott, T. Abbott, S. Abraham, F. Acernese, K. Ackley et al., GW190425: Observation of a compact binary coalescence with total mass 34 \(M_{\odot }\). Astrophys. J. Lett. 892(1), L3 (2020)

    Article  ADS  Google Scholar 

  33. S. Das, B.K. Parida, R. Sharma, Estimating tidal Love number of a class of compact stars. Eur. Phys. J. C 82(2), 136 (2022). https://doi.org/10.1140/epjc/s10052-022-10057-x

    Article  ADS  Google Scholar 

  34. L. Herrera, Leon J. Poncede, Isotropic and anisotropic charged spheres admitting a one-parameter group of conformal motions. J. Math. Phys. 26(9), 2302–2307 (1985)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. H.A. Buchdahl, General Relativistic Fluid Spheres. Phys. Rev. 116(4), 1027–1034 (1959). https://doi.org/10.1103/PhysRev.116.1027

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. L. Baskey, S. Das, F. Rahaman, An analytical anisotropic compact stellar model of embedding class I. Mod. Phys. Lett. A 36(05), 2150028 (2021)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. S. Maurya, Y. Gupta, B. Dayanandan, M. Jasim, A. Al-Jamel, Relativistic anisotropic models for compact star with equation of state p= f (\(\rho \)). Int. J. Modern Phys. D 26(02), 1750002 (2017)

    Article  ADS  MATH  Google Scholar 

  38. P. Bhar, B. Ratanpal, A new anisotropic compact star model having Matese & Whitman mass function. Astrophys. Space Sci. 361(7), 1–7 (2016)

    Article  MathSciNet  Google Scholar 

  39. R. Sharma, B. Ratanpal, Relativistic stellar model admitting a quadratic equation of state. Int. J. Modern Phys. D 22(13), 1350074 (2013)

    Article  ADS  MATH  Google Scholar 

  40. K. Schwarzschild, Über das gravitationsfeld eines massenpunktes nach der einsteinschen theorie. Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften Berlin. pp. 189–196 (1916)

  41. M. Delgaty, K. Lake, Physical acceptability of isolated, static, spherically symmetric, perfect fluid solutions of Einstein’s equations. Comput. Phys. Commun. 115(2–3), 395–415 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. F. Özel, D. Psaltis, T. Güver, G. Baym, C. Heinke, S. Guillot, The dense matter equation of state from neutron star radius and mass measurements. Astrophys. J. 820(1), 28 (2016)

    Article  ADS  Google Scholar 

  43. H. Bondi, The gravitational redshift from static spherical bodies. mnras 302(2), 337–340 (1999). https://doi.org/10.1046/j.1365-8711.1999.02137.x

    Article  ADS  Google Scholar 

  44. F. Tello-Ortiz, S. Maurya, Y. Gomez-Leyton, Class I approach as MGD generator. Eur. Phys. J. C 80(4), 1–14 (2020)

    Article  Google Scholar 

  45. M. Dey, I. Bombaci, J. Dey, S. Ray, B. Samanta, Strange stars with realistic quark vector interaction and phenomenological density-dependent scalar potential. Phys. Lett. B 438(1–2), 123–128 (1998)

    Article  ADS  Google Scholar 

  46. P. Haensel, J. Zdunik, A submillisecond pulsar and the equation of state of dense matter. Nature 340(6235), 617–619 (1989)

    Article  ADS  Google Scholar 

  47. J.A. Frieman, A.V. Olinto, Is the sub-millisecond pulsar strange? Nature 341(6243), 633–635 (1989)

    Article  ADS  Google Scholar 

  48. S. Maurya, A. Banerjee, M. Jasim, J. Kumar, A. Prasad, A. Pradhan, Anisotropic compact stars in the Buchdahl model: a comprehensive study. Phys. Rev. D 99(4), 044029 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  49. H. Heintzmann, W. Hillebrandt, Neutron stars with an anisotropic equation of state-Mass, redshift and stability. Astron. Astrophys. 38, 51–55 (1975)

    ADS  Google Scholar 

  50. L. Herrera, Cracking of self-gravitating compact objects. Phys. Lett. A 165(3), 206–210 (1992)

    Article  ADS  Google Scholar 

  51. H. Abreu, H. Hernandez, LA. Nunez, Sound speeds, cracking and stability of self-gravitating anisotropic compact objects. Class Quant Grav. 24, 4631–4646. (2007) https://doi.org/10.1088/0264-9381/24/18/005. arXiv:0706.3452. [gr-qc]

  52. B.K. Harrison, K.S. Thorne, M. Wakano, J.A. Wheeler, Gravitation Theory and Gravitational Collapse (1965)

  53. Y.B. Zeldovich, I.D., Novikov, Relativistic Astrophysics. Vol. 1: Stars and relativity. Chicago: University of Chicago Press (1971)

  54. D. Deb, B. Guha, F. Rahaman, S. Ray, Anisotropic strange stars under simplest minimal matter-geometry coupling in the f (R, T) gravity. Phys. Rev. D 97(8), 084026 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  55. M. Bejger, P. Haensel, Moments of inertia for neutron and strange stars: limits derived for the Crab pulsar. Astronomy Astrophys. 396(3), 917–921 (2002)

    Article  ADS  Google Scholar 

  56. E.E. Flanagan, T. Hinderer, Constraining neutron-star tidal Love numbers with gravitational-wave detectors. Phys. Rev. D (2008). https://doi.org/10.1103/physrevd.77.021502

    Article  Google Scholar 

  57. B.P. Abbott, R. Abbott, T.D. Abbott, F. Acernese, K. Ackley, C. Adams et al., GW170817: Measurements of neutron star radii and equation of state. Phys. Rev. Lett. (2018). https://doi.org/10.1103/physrevlett.121.161101

    Article  Google Scholar 

  58. V. Cardoso, E. Franzin, A. Maselli, P. Pani, G. Raposo, Testing strong-field gravity with tidal Love numbers. Phys. Rev. D (2017). https://doi.org/10.1103/physrevd.95.084014

    Article  Google Scholar 

  59. N. Sennett, T. Hinderer, J. Steinhoff, A. Buonanno, S. Ossokine, Distinguishing boson stars from black holes and neutron stars from tidal interactions in inspiraling binary systems. Phys. Rev. D (2017). https://doi.org/10.1103/physrevd.96.024002

    Article  MathSciNet  Google Scholar 

  60. A. Maselli, P. Pani, V. Cardoso, T. Abdelsalhin, L. Gualtieri, V. Ferrari, Probing Planckian Corrections at the Horizon Scale with LISA Binaries. Phys. Rev. Lett. (2018). https://doi.org/10.1103/physrevlett.120.081101

    Article  Google Scholar 

  61. N.K. Johnson-McDaniel, A. Mukherjee, R. Kashyap, P. Ajith, W. Del Pozzo, S. Vitale, Constraining black hole mimickers with gravitational wave observations. Phys. Rev. D (2020). https://doi.org/10.1103/physrevd.102.123010

    Article  Google Scholar 

  62. T. Binnington, E. Poisson, Relativistic theory of tidal Love numbers. Phys. Rev. D 80(8), 1–5 (2009). https://doi.org/10.1103/physrevd.80.084018

    Article  Google Scholar 

  63. T. Damour, A. Nagar, Relativistic tidal properties of neutron stars. Phys. Rev. D 80(8), 1–5 (2009). https://doi.org/10.1103/physrevd.80.084035

    Article  MathSciNet  Google Scholar 

  64. H. Fang, G. Lovelace, Tidal coupling of a Schwarzschild black hole and circularly orbiting moon. Phys. Rev. D 72(12), 1–5 (2005). https://doi.org/10.1103/physrevd.72.124016

    Article  Google Scholar 

  65. N. Gürlebeck, No-hair theorem for black holes in astrophysical environments. Phys. Rev. Lett. (2015). https://doi.org/10.1103/physrevlett.114.151102

    Article  Google Scholar 

  66. P. Pani, L. Gualtieri, A. Maselli, V. Ferrari, Tidal deformations of a spinning compact object

  67. H.S. Chia, Tidal deformation and dissipation of rotating black holes. Phys. Rev. D (2021). https://doi.org/10.1103/physrevd.104.024013

    Article  MathSciNet  Google Scholar 

  68. N. Uchikata, S. Yoshida, P. Pani, Tidal deformability and I-Love-Q relations for gravastars with polytropic thin shells. Phys. Rev. D (2016). https://doi.org/10.1103/physrevd.94.064015

    Article  MathSciNet  Google Scholar 

  69. B. Biswas, S. Bose, Tidal deformability of an anisotropic compact star: Implications of GW170817. Phys. Rev. D. 99(10), 1–11 (2019). https://doi.org/10.1103/PhysRevD.99.104002. arXiv:1903.04956

    Article  MathSciNet  Google Scholar 

  70. T. Hinderer, Tidal Love Numbers of Neutron Stars. Astrophys. J. 677(2), 1216–1220 (2008). https://doi.org/10.1086/533487. arXiv:0711.2420

    Article  ADS  Google Scholar 

  71. T. Regge, J.A. Wheeler, Stability of a schwarzschild singularity. Phys. Rev. 108(4), 1063–1069 (1957). https://doi.org/10.1103/PhysRev.108.1063

    Article  ADS  MathSciNet  MATH  Google Scholar 

  72. P. Bhar, S. Das, B.K. Parida, Compact stellar model in Tolman spacetime in the presence of pressure anisotropy. Int. J. Geometric Methods Modern Phys. p. 2250095. (2022)https://doi.org/10.1142/S0219887822500955. arXiv:2011.00856

  73. S. Das, S. Ray, M. Khlopov, K.K. Nandi, B.K. Parida, Anisotropic compact stars: constraining model parameters to account for physical features of tidal Love numbers. Ann. Phys. 433, 168597 (2021). https://doi.org/10.1016/j.aop.2021.168597

    Article  MathSciNet  MATH  Google Scholar 

  74. A. Rahmansyah, A. Sulaksono, A.B. Wahidin, A.M. Setiawan, Anisotropic neutron stars with hyperons: implication of the recent nuclear matter data and observations of neutron stars. Eur. Phys. J. C. (2020). https://doi.org/10.1140/epjc/s10052-020-8361-4

    Article  Google Scholar 

  75. S.S. Yazadjiev, D.D. Doneva, K.D. Kokkotas, Tidal Love numbers of neutron stars in f(R) gravity. Eur. Phys. J. C 78(10), 1–10 (2018). https://doi.org/10.1140/epjc/s10052-018-6285-z. arXiv:1803.09534

    Article  Google Scholar 

  76. Z. Roupas, G.G.L. Nashed, Anisotropic neutron stars modelling: constraints in Krori-Barua spacetime. Eur. Phys. J. C 80(10), 1–14 (2020). https://doi.org/10.1140/epjc/s10052-020-08462-1. arXiv:2007.09797

    Article  Google Scholar 

  77. S. Chandrasekhar, The Dynamical Instability of Gaseous Masses Approaching the Schwarzschild Limit in General Relativity. Astrophys. J. 140, 417 (1964). https://doi.org/10.1086/147938

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

FR, RS and SD gratefully acknowledge support from the Inter-University Centre for Astronomy and Astrophysics (IUCAA), Pune, Govt. of India, under its Visiting Research Associateship Programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranjan Sharma.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, S., Parida, B.K., Sharma, R. et al. Central pressure-dependent compact anisotropic stellar model and its tidal Love number. Eur. Phys. J. Plus 137, 1092 (2022). https://doi.org/10.1140/epjp/s13360-022-03292-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-03292-4

Navigation