Skip to main content
Log in

Effect of impurity position and electric field on the optical absorption coefficients and oscillator strength in spherical multilayer quantum dot

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this paper, in the effective mass approximation, we have investigated the effects of the impurity position, external electric field, and the structure sizes on the linear, third-order nonlinear, and total intersubband optical absorption coefficients and oscillator strength of a spherical multilayer quantum dot. In addition, we have examined the variation of the maximum of the total absorption coefficient and the resonance energy versus the core radius, shell thickness, well width, and the applied electric field. The initial and final states’ wave functions and their associated eigenvalues have been determined by solving the Schrödinger equation of the system using the two-dimensional finite difference method. It is found that the existence of an impurity, as well as its position and the applied electric field has a considerable influence on the optical absorption coefficients and oscillator strength. Furthermore, our results show that the structure sizes (core radius, shell thickness, well width) have a considerable effect on the maximum of the total absorption coefficient and the resonance energy.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data Availability Statement

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. A.E. Kavruk, M. Sahin, F. Koc, J. App. Phys. 114, 183704 (2013)

    Article  ADS  Google Scholar 

  2. A. Fakkahi, A. Sali, M. Jaouane, R. Arraoui, Appl. Phys. A 127, 908 (2021)

    Article  ADS  Google Scholar 

  3. M. Jaouane, A. Sali, A. Fakkahi, R. Arraoui, F. Ungan, Superlattices Microstruct. 163, 107146 (2022)

    Google Scholar 

  4. K.S. Rahul, A.K. Sneha, V. Mathew, Superlattices Microstruct. 129, 1 (2019)

    Article  ADS  Google Scholar 

  5. S. Akgul, M. Sahin, K. Koksal, J. Lumin. 132, 1705 (2012)

    Article  Google Scholar 

  6. S. Aktas, F.K. Boz, Physica E 40, 753 (2008)

    Article  ADS  Google Scholar 

  7. V. Holovatsky, M. Chubrey, O. Voitsekhivska, Superlattices Microstruct. 145, 106642 (2020)

    Article  Google Scholar 

  8. M. Sahin, F. Tek, A. Erdinc, J. App. Phys. 111, 084317 (2012)

    Article  ADS  Google Scholar 

  9. M.J. Karimi, G. Rezaei, M. Nazari, J. Lumin. 145, 55 (2014)

    Article  Google Scholar 

  10. F.K. Boz, S. Aktas, A. Bilekkaya, S.E. Okan, App. Surf. Sci. 256, 3832 (2010)

    Article  ADS  Google Scholar 

  11. R. Arraoui, A. Sali, A. Ed-Dahmouny, M. Jaouane, A. Fakkahi, Superlattices Microstruct. 159, 107049 (2021)

    Article  Google Scholar 

  12. M. Jaouane, A. Sali, A. Ezzarfi, A. Fakkahi, R. Arraoui, Physica E 127, 114543 (2021)

    Article  Google Scholar 

  13. S. Schmitt-Rink, D.A.B. Miller, D.S. Chemla, Phys. Rev. B 35, 8113 (1987)

    Article  ADS  Google Scholar 

  14. A. Doyeol, C. Shun-lien, IEEE J. Quantum Electron. 23, 2196 (1987)

    Article  ADS  Google Scholar 

  15. L. Bouzaiene, R. Ben Mahrsia, M. Baira, L. Sfaxi, H. Maaref, J. Lumin. 135, 271 (2013)

  16. B. Chen, K.-X. Guo, R.-Z. Wang, Y.-B. Zheng, B. Li, Eur. Phys. J. B 66, 227 (2008)

    Article  ADS  Google Scholar 

  17. M. Solaimani, H. Moghadam, Appl. Phys. A 126, 278 (2020)

    Article  ADS  Google Scholar 

  18. T. Chen, W. Xie, S. Liang, Physica E 44, 786 (2012)

    Article  ADS  Google Scholar 

  19. Q. Yu, K. Guo, M.H.Z. Zhang, K. Li, D. Liu, J. Phys. Chem. Solids 119, 50 (2018)

    Article  ADS  Google Scholar 

  20. X. Liu, L. Zo, C. Liu, Z.-H. Zhang, J.-H. Yuan, Opt. Mat. 53, 218 (2016)

    Article  Google Scholar 

  21. M. Kirak, Eur. Phys. J. Plus 136, 664 (2021)

    Article  Google Scholar 

  22. L.M. Burileanu, J. Lumin. 145, 684 (2014)

    Article  Google Scholar 

  23. A. Sali, M. Fliyou, H. Satori, H. Loumrhari, J. Phys. Chem. Solids 64, 31 (2003)

    Article  ADS  Google Scholar 

  24. A. Sali, M. Fliyou, H. Loumrhari, Physica B 233, 196 (1997)

    Article  ADS  Google Scholar 

  25. A. Sali, M. Fliyou, H. Satori, H. Loumrhari, Phys. Stat. Sol. (B) 211, 661 (1999)

    Article  ADS  Google Scholar 

  26. A. Sali, H. Satori, M. Fliyou, H. Loumrhari, Phys. Stat. Sol. (B) 232, 209 (2002)

    Article  ADS  Google Scholar 

  27. E. Iqraoun, A. Sali, K. El-Bakkari, A. Ezzarfi, M.E. Mora-Ramos, C.A. Duque, Phys. Scr. 96, 065808 (2021)

    Article  ADS  Google Scholar 

  28. M.G. Barseghyan, M.E. Mora-Ramos, C.A. Duque, Eur. Phys. J. B 84, 265 (2011)

    Article  ADS  Google Scholar 

  29. M.G. Barseghyan, A.A. Kirakosyan, C.A. Duque, Phys. Stat. Sol. B 246, 626 (2009)

    Article  ADS  Google Scholar 

  30. H.M. Baghramyan, G.M. Barseghyan, A.A. Kirakosyan, R.L. Restrepo, C.A. Duque, J. Lumin. 134, 594 (2013)

    Article  Google Scholar 

  31. S. Ortakaya, M. Kirak, Chin. Phys. B 25, 127302 (2016)

    Article  ADS  Google Scholar 

  32. Y. Naimi, A.R. Jafari, J. Comput. Electron. 13, 666 (2014)

    Article  Google Scholar 

  33. B. Cakir, Y. Yakar, A. Ozmen, M.O. Sezer, M. Sahin, Superlattices Microstruct. 47, 556 (2010)

    Article  ADS  Google Scholar 

  34. G. Rezaei, M.H. Tanhaei, Opt. Quant. Electron. 48, 73 (2016)

    Article  Google Scholar 

  35. M. Kirak, Y. Altinok, Eur. Phys. J. B 85, 344 (2012)

    Article  ADS  Google Scholar 

  36. M. Kirak, Y. Altinok, S. Yilmaz, J. Lumin. 136, 415 (2013)

    Article  Google Scholar 

  37. M. Kirak, S. Yilmaz, J. Phys. D: Appl. Phys. 48, 325301 (2015)

    Article  Google Scholar 

  38. M. Kirak, S. Yilmaz, M. Sahin, M. Gencaslan, J. App. Phys. 109, 094309 (2011)

    Article  ADS  Google Scholar 

  39. E. Kasapoglu, F. Ungan, C.A. Duque, U. Yesilgul, M.E. Mora-Ramos, H. Sari, I. Sokmen, Physica E 61, 107 (2014)

    Article  ADS  Google Scholar 

  40. K. Batra, V. Prasad, Eur. Phys. J. B 91, 298 (2018)

    Article  ADS  Google Scholar 

  41. A.R. Jafari, Y. Naimi, J. Comput. Electron. 12, 36 (2013)

    Article  Google Scholar 

  42. E.B. Al, E. Kasapoglu, S. Sakiroglu, H. Sari, I. Sökmen, C.A. Duque, Physica E 119, 114011 (2020)

    Article  Google Scholar 

  43. A.L. Morales, A. Montes, S.Y. Lopez, N. Raigoza, C.A. Duque, Phys. Stat. Sol. (C) 0, 652 (2003)

  44. M. Kirak, S. Yilmaz, U. Temizer, J. Nanoelect. Optoelect. 8, 165 (2013)

    Article  Google Scholar 

  45. S. Yilmaz, J. Comput. Theor. Nanosci. 10, 2019 (2013)

    Article  Google Scholar 

  46. A. Sali, H. Satori, Superlattices Microstruct. 69, 38 (2014)

    Article  ADS  Google Scholar 

  47. M. El-Yadri, N. Aghoutane, A. El Aouami, E. Feddi, F. Dujardin, C.A. Duque, Appl. Surf. Sci. 441, 204 (2018)

    Article  ADS  Google Scholar 

  48. G. Rezaei, S. Shojaeian Kish, B. Vaseghi, S.F. Taghizadeh, Physica E 62, 104 (2014)

    Article  ADS  Google Scholar 

  49. A. Ozmen, Y. Yakar, B. Cakir, U. Atav, Opt. Commun. 282, 3999 (2009)

    Article  ADS  Google Scholar 

  50. M.R.K. Vahdani, G. Rezaei, Phys. Lett. A 373, 3079 (2009)

    Article  ADS  Google Scholar 

  51. T.A. Sargsian, M.A. Mkrtchyan, H.A. Sarkisyan, D.B. Hayrapetyan, Physica E 126, 114440 (2021)

    Article  Google Scholar 

  52. R. Khordad, Physica E 42, 1503 (2010)

    Article  ADS  Google Scholar 

  53. H. Tas, M. Sahin, J. Appl. Phy. 112, 053717 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Kirak.

Ethics declarations

Conflict of interest

The authors do not have any financial and non-financial competing interests statement.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fakkahi, A., Kirak, M. & Sali, A. Effect of impurity position and electric field on the optical absorption coefficients and oscillator strength in spherical multilayer quantum dot. Eur. Phys. J. Plus 137, 1068 (2022). https://doi.org/10.1140/epjp/s13360-022-03279-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-03279-1

Navigation