Skip to main content

Advertisement

Log in

Impact of plasma process parameters on the growth of vertically aligned carbon nanotube array and its optimization as field emitters

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The present theoretical study models a vertically aligned carbon nanotube (VACNT) array in plasma and structures its growth based on the variation of plasma operating conditions and process parameters. We investigate the consequence of plasma concentration, power, pressure and substrate temperature on the aspects of the VACNT array. Furthermore, the amorphous carbon deposition between the CNTs of the array is also examined. As field emission is one of the most outstanding applications of the VACNT array, the field enhancement factor for the array is also deliberated and optimized. The results are modelled, considering the balance of plasma species, plasma and CNT energy exchange, hydrocarbon and hydrogen generation over the catalyst nanoparticle, CNT array growth, and carbon deposition over the substrate between CNTs in VACNT array growth using plasma-enhanced chemical vapour deposition. The model is numerically solved by deliberating the experimental literature’s initial conditions and plasma parameters. The aspects of an array, i.e. its length and average CNT diameter, can be optimized as desired by altering the operating conditions and glow discharge parameters. Additionally, the influence of array aspects on the field emission properties is observed. The results of the study are validated by the available experimental data. This theoretical study can be effectively used to grow the VACNT array and its optimization to obtain better field emitters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: The data supporting the findings of this study are available within the article and available from the corresponding author upon reasonable request.]

References

  1. Z. Shi, Y. Lian, X. Zhou, Z. Gu, Y. Zhang, S. Iijima, L. Zhou, K. Yue, S. Zhang, Carbon N. Y. 37, 1449 (1999)

    Article  Google Scholar 

  2. A. Maiti, C.J. Brabec, C.M. Roland, J. Bernholc, Phys. Rev. Lett. 73, 2468 (1994)

    Article  ADS  Google Scholar 

  3. A.A. Puretzky, D.B. Geohegan, H. Schittenhelm, X. Fan, M.A. Guillorn, Appl. Surf. Sci. 197–198, 552 (2002)

    Article  ADS  Google Scholar 

  4. R.L. Vander Wal, G.M. Berger, T.M. Ticich, Appl. Phys. A Mater. Sci. Process 77, 885 (2003)

    Article  ADS  Google Scholar 

  5. M. Jung, Diam. Relat. Mater. 10, 1235 (2001)

    Article  ADS  Google Scholar 

  6. R. Brukh, S. Mitra, Chem. Phys. Lett. 424, 126 (2006)

    Article  ADS  Google Scholar 

  7. M. Tanemura, K. Iwata, K. Takahashi, Y. Fujimoto, F. Okuyama, H. Sugie, V. Filip, J. Appl. Phys. 90, 1529 (2001)

    Article  ADS  Google Scholar 

  8. C. Bower, O. Zhou, W. Zhu, D.J. Werder, S. Jin, Appl. Phys. Lett. 77, 2767 (2000)

    Article  ADS  Google Scholar 

  9. M. Chhowalla, K.B.K. Teo, C. Ducati, N.L. Rupesinghe, G.A.J. Amaratunga, A.C. Ferrari, D. Roy, J. Robertson, W.I. Milne, J. Appl. Phys. 90, 5308 (2001)

    Article  ADS  Google Scholar 

  10. L. Delzeit, C.V. Nguyen, R.M. Stevens, J. Han, M. Meyyappan, Nanotechnology 13, 280 (2002)

    Article  ADS  Google Scholar 

  11. Y. Luo, X. Wang, M. He, X. Li, H. Chen, J. Nanomater. 2012, 542582 (2012)

    Article  Google Scholar 

  12. P.H. Lin, C.L. Sie, C.A. Chen, H.C. Chang, Y.T. Shih, H.Y. Chang, W.J. Su, K.Y. Lee, Nanoscale Res. Lett. 10, 1 (2015)

    Article  ADS  Google Scholar 

  13. X. Tang, H. Yue, L. Liu, J. Luo, X. Wu, R. Zheng, G. Cheng, A.C.S. Appl, Nano Mater. 3, 7659 (2020)

    Google Scholar 

  14. L. Nilsson, O. Groening, C. Emmenegger, O. Kuettel, E. Schaller, L. Schlapbach, H. Kind, J.M. Bonard, K. Kern, Appl. Phys. Lett. 76, 2071 (2000)

    Article  ADS  Google Scholar 

  15. U. Sharma, S.C. Sharma, IEEE Trans. Plasma Sci. 50, 888 (2022)

    Article  ADS  Google Scholar 

  16. T. Kato, G.H. Jeong, T. Hirata, R. Hatakeyama, K. Tohji, K. Motomiya, Chem. Phys. Lett. 381, 422 (2003)

    Article  ADS  Google Scholar 

  17. S. Hofmann, C. Ducati, J. Robertson, B. Kleinsorge, Appl. Phys. Lett. 83, 135 (2003)

    Article  ADS  Google Scholar 

  18. S.K. Srivastava, V.D. Vankar, V. Kumar, Thin Solid Films 515, 1552 (2006)

    Article  ADS  Google Scholar 

  19. S.K. Srivastava, V.D. Vankar, D.V. Sridhar Rao, V. Kumar, Thin Solid Films 515, 1851 (2006)

    Article  ADS  Google Scholar 

  20. Y. Hayashi, T. Fukumura, K. Odani, T. Matsuba, R. Utsunomiya, Thin Solid Films 518, 3506 (2010)

    Article  ADS  Google Scholar 

  21. M.S. Bell, K.B.K. Teo, R.G. Lacerda, W.I. Milne, D.B. Hash, M. Meyyappan, Pure Appl. Chem. 78, 1117 (2006)

    Article  Google Scholar 

  22. M.S. Bell, R.G. Lacerda, K.B.K. Teo, N.L. Rupesinghe, G.A.J. Amaratunga, W.I. Milne, M. Chhowalla, Appl. Phys. Lett. 85, 1137 (2004)

    Article  ADS  Google Scholar 

  23. U. Sharma, S.C. Sharma, Phys. Plasmas 25, 103509 (2018)

    Article  ADS  Google Scholar 

  24. H. Okuyama, N. Iwata, H. Yamamoto, Mol. Cryst. Liq. Cryst. 472, 209/[599] (2007)

    Article  Google Scholar 

  25. T. Ikuno, S. Takahashi, K. Kamada, S. Ohkura, S.I. Honda, M. Katayama, T. Hirao, K. Oura, Surf. Rev. Lett. 10, 611 (2003)

    Article  ADS  Google Scholar 

  26. J. Lee, E. Oh, T. Kim, J.H. Sa, S.H. Lee, J. Park, D. Moon, I.S. Kang, M.J. Kim, S.M. Kim, K.H. Lee, Carbon N. Y. 93, 217 (2015)

    Article  Google Scholar 

  27. O.A. Louchev, Y. Sato, H. Kanda, Appl. Phys. Lett. 80, 2752 (2002)

    Article  ADS  Google Scholar 

  28. G. Zhong, T. Iwasaki, J. Robertson, H. Kawarada, J. Phys. Chem. B 111, 1907 (2007)

    Article  Google Scholar 

  29. A. Thapa, K.L. Jungjohann, X. Wang, W. Li, J. Mater. Sci. 55, 2101 (2020)

    Article  ADS  Google Scholar 

  30. T. Campo, S. Pinilla, S. Gálvez, J.M. Sanz, F. Márquez, C. Morant, Nanomaterials 9, 571 (2019)

    Article  Google Scholar 

  31. M. Morassutto, R.M. Tiggelaar, M.A. Smithers, J.G.E. Gardeniers, Mater. Today Commun. 7, 89 (2016)

    Article  Google Scholar 

  32. H. Mehdipour, K. Ostrikov, A.E. Rider, Z. Han, Plasma Process. Polym. 8, 386 (2011)

    Article  Google Scholar 

  33. Z. Marvi, S. Xu, G. Foroutan, K. Ostrikov, Phys. Plasmas 22, 013504 (2015)

    Article  ADS  Google Scholar 

  34. I. Denysenko, K. Ostrikov, J. Phys. D. Appl. Phys. 42, 015208 (2009)

    Article  ADS  Google Scholar 

  35. H. Mehdipour, K. Ostrikov, A.E. Rider, Nanotechnology 21, 455605 (2010)

    Article  ADS  Google Scholar 

  36. M. Mao, A. Bogaerts, J. Phys. D. Appl. Phys. 43, 205201 (2010)

    Article  ADS  Google Scholar 

  37. I.B. Denysenko, S. Xu, J.D. Long, P.P. Rutkevych, N.A. Azarenkov, K. Ostrikov, J. Appl. Phys. 95, 2713 (2004)

    Article  ADS  Google Scholar 

  38. M.A. Lieberman, A.J. Lichtenberg, Principles of plasma discharges and materials processing, 2nd edn. (Wiley, New York, 2005)

    Book  Google Scholar 

  39. UMIST Database Astrochem. (2012)

  40. M.S. Sodha, S. Misra, S.K. Mishra, S. Srivastava, J. Appl. Phys. 107, 103307 (2010)

    Article  ADS  Google Scholar 

  41. I. Denysenko, N.A. Azarenkov, J. Phys. D. Appl. Phys. 44, 174031 (2011)

    Article  ADS  Google Scholar 

  42. N.V. Mantzaris, E. Gogolides, A.G. Boudouvis, A. Rhallabi, G. Turban, J. Appl. Phys. 79, 3718 (1996)

    Article  ADS  Google Scholar 

  43. O.A. Louchev, C. Dussarrat, Y. Sato, J. Appl. Phys. 86, 1736 (1999)

    Article  ADS  Google Scholar 

  44. I. Denysenko, K. Ostrikov, M.Y. Yu, N.A. Azarenkov, J. Appl. Phys. 102, 074308 (2007)

    Article  ADS  Google Scholar 

  45. K.B.K. Teo, M. Chhowalla, G.A.J. Amaratunga, W.I. Milne, G. Pirio, P. Legagneux, F. Wyczisk, D. Pribat, D.G. Hasko, Appl. Phys. Lett. 80, 2011 (2002)

    Article  ADS  Google Scholar 

  46. C.J. Edgcombe, U. Valdrè, J. Microsc. 203, 188 (2001)

    Article  MathSciNet  Google Scholar 

  47. J.M. Bonard, N. Weiss, H. Kind, T. Stöckli, L. Forró, K. Kern, A. Châtelain, Adv. Mater. 13, 184 (2001)

    Article  Google Scholar 

  48. J. Benedikt, J. Phys. D. Appl. Phys. 43, 043001 (2010)

    Article  ADS  Google Scholar 

  49. C. Bower, W. Zhu, S. Jin, O. Zhou, Appl. Phys. Lett. 77, 830 (2000)

    Article  ADS  Google Scholar 

  50. H. Cui, O. Zhou, B.R. Stoner, J. Appl. Phys. 88, 6072 (2000)

    Article  ADS  Google Scholar 

  51. S.V. Bulyarskiy, G.G. Gusarov, A.V. Lakalin, M.S. Molodenskiy, A.A. Pavlov, R.M. Ryazanov, Diam. Relat. Mater. 103, 107665 (2020)

    Article  ADS  Google Scholar 

  52. S.V. Bulyarskiy, A.V. Lakalin, M.S. Molodenskii, A.A. Pavlov, R.M. Ryazanov, Inorg. Mater. 57, 20 (2021)

    Article  Google Scholar 

  53. G.Y. Chen, C.H.P. Poa, V. Stolojan, S. Henley, S.R.P. Silva, Mater. Res. Soc. Symp. Proc. 858, 91 (2004)

    Article  Google Scholar 

  54. W.Z. Collison, T.Q. Ni, M.S. Barnes, J. Vac. Sci. Technol. A Vac. Surf. Film 16, 100 (1998)

    Article  ADS  Google Scholar 

  55. T. Ikuno, M. Katayama, K. Kamada, S. Hiwatashi, S. Ohkura, S.I. Honda, K. Oura, Jpn. Appl. Phys. Part 1 Regul. Pap. Short Notes Rev. Pap. 42, 6717 (2003)

    Article  Google Scholar 

  56. H.W. Wei, K.C. Leou, M.T. Wei, Y.Y. Lin, C.H. Tsai, J. Appl. Phys. 98, 044313 (2005)

    Article  ADS  Google Scholar 

  57. V.I. Merkulov, D.K. Hensley, A.V. Melechko, M.A. Guillorn, D.H. Lowndes, M.L. Simpson, J. Phys. Chem. B 106, 10570 (2002)

    Article  Google Scholar 

  58. S.C. Chang, T.C. Lin, C.Y. Pai, Microelectron. J. 38, 657 (2007)

    Article  Google Scholar 

  59. G. Shivkumar, S.S. Tholeti, M.A. Alrefae, T.S. Fisher, A.A. Alexeenko, J. Appl. Phys. 119, 113301 (2016)

    Article  ADS  Google Scholar 

  60. B.A. Cruden, A.M. Cassell, D.B. Hash, M. Meyyappan, J. Appl. Phys. 96, 5284 (2004)

    Article  ADS  Google Scholar 

  61. Z.L. Tsakadze, K. Ostrikov, C.H. Sow, S.G. Mhaisalkar, Y.C. Boey, J. Nanosci. Nanotechnol. 10, 6575 (2010)

    Article  Google Scholar 

  62. W.Z. Li, J.G. Wen, Z.F. Ren, Appl. Phys. A Mater. Sci. Process. 73, 259 (2001)

    Article  ADS  Google Scholar 

  63. S.H. Jo, Y. Tu, Z.P. Huang, D.L. Carnahan, D.Z. Wang, Z.F. Ren, Appl. Phys. Lett. 82, 3520 (2003)

    Article  ADS  Google Scholar 

  64. Z. Xu, X.D. Bai, E.G. Wang, Appl. Phys. Lett. 88, 133107 (2006)

    Article  ADS  Google Scholar 

  65. M. Chhowalla, C. Ducati, N.L. Rupesinghe, K.B.K. Teo, G.A.J. Amaratunga, Appl. Phys. Lett. 79, 2079 (2001)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Umang Sharma is grateful to the Department of Science and Technology (DST), Government of India, for providing the financial support under DST – INSPIRE fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suresh C. Sharma.

Ethics declarations

Conflict of Interest

The authors have no conflicts to disclose.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, U., Sharma, S.C. Impact of plasma process parameters on the growth of vertically aligned carbon nanotube array and its optimization as field emitters. Eur. Phys. J. Plus 137, 823 (2022). https://doi.org/10.1140/epjp/s13360-022-03005-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-03005-x

Navigation