Skip to main content
Log in

Shadow cast by Kerr-like black hole in the presence of plasma in Einstein-bumblebee gravity

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In the Einstein-bumblebee gravity, the Lorentz symmetry is spontaneously broken by a vector field. In this paper, we attempt to test the Lorentz symmetry via the observation of the shadow cast by the Kerr-like black hole with or without plasma. A novel phenomenon of the Lorentz-violating parameter on the shadow is observed. The result shows that when the observer gradually moves from the poles to the equatorial plane, the shadow radius \(R_\mathrm{s}\) firstly decreases and then increases with the Lorentz-violating parameter. Such nonmonotonic behavior provides us an important understanding on the black hole shadow in the Einstein-bumblebee gravity. Besides, three more distortion observables are calculated, and found to increase with the Lorentz-violating parameter. The influence of the Lorentz-violating parameter on the deflection angle of light rays is also calculated via the Gauss-Bonnet theorem. When a homogeneous plasma is present, the motion of the photon is analyzed. We further observe that the frequency of plasma shrinks the size, while enhances the deformation of the shadow. Finally, adopting the observed data of the diameter of M87\(^*\), we find the favored range of some parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. K. Akiyama et al., [Event Horizon Telescope Collaboration], First M87 Event Horizon Telescope results. I. The shadow of the supermassive black hole. Astrophys. J. 875, L1 (2019). arXiv:1906.11238 [astro-ph.GA]

  2. K. Akiyama et al., [Event Horizon Telescope Collaboration], First M87 Event Horizon Telescope results. II. Array and instrumentation. Astrophys. J. 875, L2 (2019). arXiv:1906.11239 [astro-ph.IM]

    Article  ADS  Google Scholar 

  3. K. Akiyama et al., [Event Horizon Telescope Collaboration], First M87 Event Horizon Telescope results. III. Data processing and calibration. Astrophys. J. 875, L3 (2019). arXiv:1906.11240 [astro-ph.GA]

    Article  ADS  Google Scholar 

  4. K. Akiyama et al., [Event Horizon Telescope Collaboration], First M87 Event Horizon Telescope results. IV. Imaging the central supermassive black hole. Astrophys. J. 875, L4 (2019). http://arxiv.org/abs/1906.11241

  5. K. Akiyama et al., [Event Horizon Telescope Collaboration], First M87 Event Horizon Telescope results. V. Physical origin of the asymmetric ring. Astrophys. J. 875, L5 (2019). http://arxiv.org/abs/1906.11242

  6. K. Akiyama et al., [Event Horizon Telescope Collaboration], First M87 Event Horizon Telescope results. VI. The shadow and mass of the central black hole. Astrophys. J. 875, L6 (2019). arXiv:1906.11243 [astro-ph.GA]

  7. J.L. Synge, The escape of photons from gravitationally intense stars. Mon. Not. Roy. Astron. Soc. 131, 463–466 (1966)

    Article  ADS  Google Scholar 

  8. J.P. Luminet, Image of a spherical black hole with thin accretion disk. A &A 75, 228 (1979)

    ADS  Google Scholar 

  9. J.M. Bardeen, Timelike and Null Geodesics of the Kerr Metric, Gordon Breach (Science Publishers, New York, 1973)

    Google Scholar 

  10. C. Bambi, K. Freese, Apparent shape of super-spinning black holes. Phys. Rev. D 79, 043002 (2009). [arXiv:0812.1328 [astro-ph]]

    Article  ADS  MathSciNet  Google Scholar 

  11. K. Hioki, K. Maeda, Measurement of the Kerr spin parameter by observation of a compact object’s shadow. Phys. Rev. D 80, 024042 (2009). [arXiv:0904.3575 [astro-ph.HE]]

    Article  ADS  Google Scholar 

  12. C. Bambi, N. Yoshida, Shape and position of the shadow in the \(\delta \)=2 Tomimatsu–Sato space-time. Class. Quant. Grav. 27, 205006 (2010). [arXiv:1004.3149 [gr-qc]]

    Article  ADS  MATH  Google Scholar 

  13. Z.L. Li, C. Bambi, Measuring the Kerr spin parameter of regular black holes from their shadow. JCAP 1401, 041 (2014). [arXiv:1309.1606 [gr-qc]]

    Article  ADS  Google Scholar 

  14. N. Tsukamoto, Z. Li, C. Bambi, Constraining the spin and the deformation parameters from the black hole shadow. JCAP 1406, 043 (2014). [arXiv:1403.0371 [gr-qc]]

    Article  ADS  Google Scholar 

  15. T. Johannsen, Photon rings around Kerr and Kerr-like black holes. Astrophys. J. 777, 170 (2013). [arXiv:1501.02814 [astro-ph.HE]]

    Article  ADS  Google Scholar 

  16. A. Abdujabbarov, L. Rezzolla, B. Ahmedov, A coordinate-independent characterization of a black hole shadow. Mon. Not. Roy. Astron. Soc. 454, 2423 (2015). [arXiv:1503.09054 [gr-qc]]

    Article  ADS  Google Scholar 

  17. M. Ghasemi-Nodehi, Z.L. Li, C. Bambi, Shadows of CPR black holes and tests of the Kerr metric. Eur. Phys. J. C 75, 315 (2015). [arXiv:1506.02627 [gr-qc]]

    Article  ADS  Google Scholar 

  18. R. Kumar, S.G. Ghosh, Black Hole Parameter Estimation from Its Shadow. Astrophys. J. 892, 78 (2020). [arXiv:1811.01260 [gr-qc]]

    Article  ADS  Google Scholar 

  19. S.W. Wei, P. Cheng, Y. Zhong, X.N. Zhou, Shadow of noncommutative geometry inspired black hole. JCAP 1508, 004 (2015). [arXiv:1501.06298 [gr-qc]]

    Article  ADS  MathSciNet  Google Scholar 

  20. S. Abdolrahimi, R.B. Mann, C. Tzounis, Distorted local shadows. Phys. Rev. D 91, 084052 (2015). [arXiv:1502.00073 [gr-qc]]

    Article  ADS  MathSciNet  Google Scholar 

  21. P.V.P. Cunha, C.A.R. Herdeiro, E. Radu, H.F. Runarsson, Shadows of Kerr black holes with and without scalar hair. Int. J. Mod. Phys. D 25, 1641021 (2016). [arXiv:1605.08293 [gr-qc]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. P.V.P. Cunha, C.A.R. Herdeiro, Shadows and strong gravitational lensing: a brief review. Gen. Rel. Grav. 50, 42 (2018). [arXiv:1801.00860 [gr-qc]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. A. övgün, İ Sakallı, J. Saavedra, Shadow cast and deflection angle of Kerr–Newman–Kasuya spacetime. JCAP 1810, 041 (2018). arXiv:1807.00388 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. H.M. Wang, Y.M. Xu, S.W. Wei, Shadows of Kerr-like black holes in a modified gravity theory. JCAP 1903, 046 (2019). [arXiv:1810.12767 [gr-qc]]

    Article  ADS  MathSciNet  Google Scholar 

  25. S.W. Wei, Y.X. Liu, R.B. Mann, Intrinsic curvature and topology of shadows in Kerr spacetime. Phys. Rev. D 99, 041303 (2019). [arXiv:1811.00047 [gr-qc]]

    Article  ADS  MathSciNet  Google Scholar 

  26. S.W. Wei, Y.C. Zou, Y.X. Liu, R.B. Mann, Curvature radius and Kerr black hole shadow. JCAP 1908, 030 (2019). [arXiv:1904.07710 [gr-qc]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. M.Z. Wang, S.B. Chen, J.C. Wang, J.L. Jing, Shadow of a Schwarzschild black hole surrounded by a Bach-Weyl ring. Eur. Phys. J. C 80, 110 (2020). [arXiv:1904.12423 [gr-qc]]

    Article  ADS  Google Scholar 

  28. T. Zhu, Q. Wu, M. Jamil, K. Jusufi, Shadows and deflection angle of charged and slowly rotating black holes in Einstein-Æther theory. Phys. Rev. D 100, 044055 (2019). [arXiv:1906.05673 [gr-qc]]

    Article  ADS  MathSciNet  Google Scholar 

  29. C. Liu, C. Ding, J. Jing, Thin accretion disk around a rotating Kerr-like black hole in Einstein-bumblebee gravity model (2019). arXiv:1910.13259 [gr-qc]

  30. A. Allahyari, M. Khodadi, S. Vagnozzi, D.F. Mota, Magnetically charged black holes from non-linear electrodynamics and the Event Horizon Telescope. JCAP 02, 003 (2020). [arXiv:1912.08231 [gr-qc]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. S. Vagnozzi, C. Bambi, L. Visinelli, Concerns regarding the use of black hole shadows as standard rulers. Class. Quant. Grav. 37, 087001 (2020). [arXiv:2001.02986 [gr-qc]]

    Article  ADS  MathSciNet  Google Scholar 

  32. C. Liu, T. Zhu, Q. Wu, K. Jusufi, M. Jamil, M. Azreg-Aïnou, A. Wang, Shadow and quasinormal modes of a rotating loop quantum black hole. Phys. Rev. D 101, 084001 (2020). [arXiv:2003.00477 [gr-qc]]

    Article  ADS  MathSciNet  Google Scholar 

  33. P.V.P. Cunha, C.A.R. Herdeiro, Stationary black holes and light rings. Phys. Rev. Lett. 124, 181101 (2020). [arXiv:2003.06445 [gr-qc]]

    Article  ADS  MathSciNet  Google Scholar 

  34. S.W. Wei, Y.X. Liu, Testing the nature of Gauss-Bonnet gravity by four-dimensional rotating black hole shadow. Eur. Phys. J. Plus 136, 436 (2021). [arXiv:2003.07769 [gr-qc]]

    Article  Google Scholar 

  35. M. Khodadi, A. Allahyari, S. Vagnozzi, D.F. Mota, Black holes with scalar hair in light of the Event Horizon Telescope. JCAP 09, 026 (2020). [arXiv:2005.05992 [gr-qc]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. M. Khodadi, E.N. Saridakis, Einstein-Æther gravity in the light of event horizon telescope observations of M87*. Phys. Dark Univ. 32, 100835 (2021). [arXiv:2012.05186 [gr-qc]]

    Article  Google Scholar 

  37. M. Zhang, J. Jiang, NUT charges and black hole shadows. Phys. Lett. B 816, 136213 (2021). [arXiv:2103.11416 [gr-qc]]

    Article  MathSciNet  MATH  Google Scholar 

  38. H.C.D. Lima, Junior., P.V.P. Cunha, C.A.R. Herdeiro, L.C.B. Crispino, Shadows and lensing of black holes immersed in strong magnetic fields, (2021). arXiv:2104.09577 [gr-qc]

  39. S. Liebes, Gravitational lenses. Phys. Rev. 133, B835 (1964). https://doi.org/10.1103/PhysRev.133.B835

    Article  ADS  MATH  Google Scholar 

  40. S. Refsdal, The gravitational lens effect. Mon. Not. Roy. Astron. Soc. 128, 295 (1964)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. R.F. O’Connell, G.L. Surmelian, Effect of gravitational light deflection on the proposed gyroscope test of the Lense–Thirring effect. Phys. Rev. D 4, 286 (1971). https://doi.org/10.1103/PhysRevD.4.286

    Article  ADS  Google Scholar 

  42. R. Blandford, R. Narayan, Fermat’s principle, caustics, and the classification of gravitational lens images. Astrophys. J. 310, 568 (1986). https://doi.org/10.1086/164709

    Article  ADS  Google Scholar 

  43. P. Schneider, J. Ehlers, E.E. Falco, Gravitational Lenses (Springer-Verlag, Berlin, 1993)

    Google Scholar 

  44. G.W. Gibbons, M.C. Werner, Applications of the Gauss–Bonnet theorem to gravitational lensing. Class. Quant. Grav. 25, 235009 (2008). [arXiv:0807.0854 [gr-qc]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. M.C. Werner, Gravitational lensing in the Kerr-Randers optical geometry. Gen. Rel. Grav. 44, 3047 (2012). [arXiv:1205.3876 [gr-qc]]

  46. K. Jusufi, Quantum effects on the deflection of light and the Gauss–Bonnet theorem. Int. J. Geom. Meth. Mod. Phys. 14, 1750137 (2017). http://arxiv.org/abs/1611.00713

  47. İ Sakallı, A. övgün, Hawking radiation and deflection of light from Rindler modified Schwarzschild black hole. EPL 118, 60006 (2017). (arXiv:1702.04636 [physics.gen-ph])

  48. K. Jusufi, M.C. Werner, A. Banerjee, A. övgün, Light deflection by a rotating global monopole spacetime, Phys. Rev. D 95, 104012 (2017). [arXiv:1702.05600 [gr-qc]]

  49. K. Jusufi, İ. Sakallı, A. övgün, Effect of Lorentz symmetry breaking on the deflection of light in a cosmic string spacetime, Phys. Rev. D 96, 024040 (2017). [arXiv:1705.06197 [gr-qc]]

  50. G. Crisnejo, E. Gallo, Weak lensing in a plasma medium and gravitational deflection of massive particles using the Gauss–Bonnet theorem. A unified treatment. Phys. Rev. D 97, 124016 (2018). arXiv:1804.05473 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  51. A. övgün, İ. Sakallı, J. Saavedra, Weak gravitational lensing by Kerr-MOG Black Hole and Gauss-Bonnet theorem, Annals Phys. 411, 167978 (2019). [arXiv:1806.06453 [gr-qc]]

  52. A. Ishihara, Y. Suzuki, T. Ono, T. Kitamura, H. Asada, Gravitational bending angle of light for finite distance and the Gauss–Bonnet theorem. Phys. Rev. D 94, 084015 (2016). [arXiv:1604.08308 [gr-qc]]

    Article  ADS  MathSciNet  Google Scholar 

  53. A. Ishihara, Y. Suzuki, T. Ono, H. Asada, Finite-distance corrections to the gravitational bending angle of light in the strong deflection limit. Phys. Rev. D 95, 044017 (2017). https://arxiv.org/abs/1612.04044

  54. T. Ono, A. Ishihara, H. Asada, Gravitomagnetic bending angle of light with finite-distance corrections in stationary axisymmetric spacetimes. Phys. Rev. D 96, 104037 (2017). [arXiv:1704.05615 [gr-qc]]

    Article  ADS  MathSciNet  Google Scholar 

  55. S. Ichimaru, Bimodal behavior of accretion disks: theory and application to Cygnus X-1 transitions. Astrophys. J. 214, 840 (1977)

    Article  ADS  Google Scholar 

  56. R. Narayan, I. Yi, Advection dominated accretion: underfed black holes and neutron stars. Astrophys. J. 452, 710 (1995). ([astro-ph/9411059])

    Article  ADS  Google Scholar 

  57. J.M. Hollywood, F. Melia, General relativistic effects on the infrared spectrum of thin accretion disks in active galactic nuclei : application to Sagittarius A*. Astrophys. J. Suppl. 112, 423 (1997)

    Article  ADS  Google Scholar 

  58. R.C. Thomson, D.R.T. Robinson, N.R. Tanvir, C.D. Mackay, A. Boksenberg, HST polarization map of the ultraviolet emission from the outer jet in m87 and a comparison with the 2cm radio emission. Mon. Not. Roy. Astron. Soc. 275, 921 (1995). ([astro-ph/9505121])

    Article  ADS  Google Scholar 

  59. C.S. Reynolds, A.C. Fabian, A. Celotti, M.J. Rees, The matter content of the jet in m87: evidence for an electron-positron jet. Mon. Not. Roy. Astron. Soc. 283, 873 (1996). ([astro-ph/9603140])

    Article  ADS  Google Scholar 

  60. Y.Y. Kovalev, M.L. Lister, D.C. Homan, K.I. Kellermann, The Inner Jet of the Radio Galaxy M87. Astrophys. J. Lett. 668, L27 (2007). [arXiv:0708.2695 [astro-ph]]

    Article  ADS  Google Scholar 

  61. A. Broderick, R. Blandford, Covariant magnetoionic theory - I. Ray propagation. Mon. Not. Roy. Astron. Soc. 342, 1280 (2003). [astro-ph/0302190]

  62. V. Perlick, O.Y. Tsupko, G.S. Bisnovatyi-Kogan, Influence of a plasma on the shadow of a spherically symmetric black hole. Phys. Rev. D 92, 104031 (2015). [arXiv:1507.04217 [gr-qc]]

    Article  ADS  MathSciNet  Google Scholar 

  63. F. Atamurotov, B. Ahmedov, Optical properties of black hole in the presence of plasma: shadow. Phys. Rev. D 92, 084005 (2015). [arXiv:1507.08131 [gr-qc]]

    Article  ADS  Google Scholar 

  64. A. Abdujabbarov, B. Toshmatov, Z. Stuchlík, B. Ahmedov, Shadow of the rotating black hole with quintessential energy in the presence of plasma. Int. J. Mod. Phys. D 26, 1750051 (2016). [arXiv:1512.05206 [gr-qc]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  65. C.Q. Liu, C.K. Ding, J.L. Jing, Effects of homogeneous plasma on strong gravitational lensing of Kerr black holes. Chin. Phys. Lett. 34, 090401 (2017). [arXiv:1610.02128 [gr-qc]]

    Article  ADS  Google Scholar 

  66. V. Perlick, O.Y. Tsupko, Light propagation in a plasma on Kerr spacetime: separation of the Hamilton–Jacobi equation and calculation of the shadow. Phys. Rev. D 95, 104003 (2017). [arXiv:1702.08768 [gr-qc]]

    Article  ADS  MathSciNet  Google Scholar 

  67. H. Yan, Influence of a plasma on the observational signature of a high-spin Kerr black hole. Phys. Rev. D 99, 084050 (2019). [arXiv:1903.04382 [gr-qc]]

    Article  ADS  MathSciNet  Google Scholar 

  68. S. Dastan, R. Saffari, S. Soroushfar, Shadow of a charged rotating black hole in \(f(R)\) gravity, (2016). arXiv:1606.06994 [gr-qc]

  69. A. Saha, S.M. Modumudi, S. Gangopadhyay, Shadow of a noncommutative geometry inspired Ayón Beato García black hole. Gen. Rel. Grav. 50, 103 (2018). [arXiv:1802.03276 [gr-qc]]

    Article  ADS  MATH  Google Scholar 

  70. A. Das, A. Saha, S. Gangopadhyay, Shadow of charged black holes in Gauss–Bonnet gravity. Eur. Phys. J. C 80, 180 (2020). [arXiv:1909.01988 [gr-qc]]

    Article  ADS  Google Scholar 

  71. G.Z. Babar, A.Z. Babar, F. Atamurotov, Optical properties of Kerr–Newman spacetime in the presence of plasma. Eur. Phys. J. C 80, 761 (2020). [arXiv:2008.05845 [gr-qc]]

    Article  ADS  Google Scholar 

  72. M. Fathi, J.R. Villanueva, The role of elliptic integrals in calculating the gravitational lensing of a charged Weyl black hole surrounded by plasma (2020) .arXiv:2009.03402 [gr-qc]

  73. A. Chowdhuri, A. Bhattacharyya, Shadow analysis for rotating black holes in the presence of plasma for an expanding universe (2020). arXiv:2012.12914 [gr-qc]

  74. V. Perlick, O.Y. Tsupko, Calculating black hole shadows: review of analytical studies (2021) arXiv:2105.07101 [gr-qc]

  75. D. Mattingly, Modern tests of Lorentz invariance. Living Rev. Rel. 8, 5 (2005). [arXiv:gr-qc/0502097]

    Article  MATH  Google Scholar 

  76. C. Rovelli, Ashtekar formulation of general relativity and loop space nonperturbative quantum gravity: a report. Class. Quant. Grav. 8, 1613 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  77. A. Ashtekar, C. Rovelli, L. Smolin, Gravitons and loops. Phys. Rev. D 44, 1740 (1991). [hep-th/9202054]

    Article  ADS  MathSciNet  Google Scholar 

  78. A. Ashtekar, C. Rovelli, A Loop representation for the quantum Maxwell field. Class. Quant. Grav. 9, 1121 (1992). [hep-th/9202063]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  79. A. Ashtekar, C. Rovelli, L. Smolin, Weaving a classical geometry with quantum threads. Phys. Rev. Lett. 69, 237 (1992). [hep-th/9203079]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  80. A. Ashtekar. Recent developments in classical and quantum theories of connections including general relativity (1992) hep-th/9205038

  81. V.A. Kostelecký, S. Samuel, Spontaneous breaking of Lorentz symmetry in string theory. Phys. Rev. D 39, 683 (1989)

    Article  ADS  Google Scholar 

  82. V.A. Kostelecký, S. Samuel, Gravitational phenomenology in higher dimensional theories and strings. Phys. Rev. D 40, 1886 (1989)

    Article  ADS  Google Scholar 

  83. V.A. Kostelecký, S. Samuel, Phenomenological Gravitational constraints on strings and higher dimensional theories. Phys. Rev. Lett. 63, 224 (1989)

    Article  ADS  Google Scholar 

  84. V.A. Kostelecký, R. Lehnert, Stability, causality, and Lorentz and CPT violation. Phys. Rev. D 63, 065008 (2001). [hep-th/0012060]

    Article  ADS  MathSciNet  Google Scholar 

  85. V.A. Kostelecký, Gravity, Lorentz violation, and the standard model. Phys. Rev. D 69, 105009 (2004). [hep-th/0312310]

    Article  ADS  Google Scholar 

  86. R. Bluhm, V.A. Kostelecky, Spontaneous Lorentz violation, Nambu-Goldstone modes, and gravity. Phys. Rev. D 71, 065008 (2005). [hep-th/0412320]

    Article  ADS  Google Scholar 

  87. Q.G. Bailey, V.A. Kostelecký, Signals for Lorentz violation in post-Newtonian gravity. Phys. Rev. D 74, 045001 (2006). ([gr-qc/0603030])

    Article  ADS  Google Scholar 

  88. R. Bluhm, N.L. Gagne, R. Potting, A. Vrublevskis, Constraints and stability in vector theories with spontaneous Lorentz violation. Phys. Rev. D 77, 125007 (2008). [arXiv:0802.4071 [hep-th]]

    Article  ADS  Google Scholar 

  89. R. Casana, A. Cavalcante, F.P. Poulis, E.B. Santos, Exact Schwarzschild-like solution in a Einstein-bumblebee gravity model. Phys. Rev. D 97, 104001 (2018). [arXiv:1711.02273 [gr-qc]]

    Article  ADS  MathSciNet  Google Scholar 

  90. D.A. Gomes, R.V. Maluf, C.A.S. Almeida, Thermodynamics of Schwarzschild-like black holes in modified gravity models. Annals Phys. 418, 168198 (2020). [arXiv:1811.08503 [gr-qc]]

    Article  MathSciNet  MATH  Google Scholar 

  91. S. Kanzi, İ. Sakallı, GUP Modified Hawking Radiation in Bumblebee Gravity, Nucl. Phys. B 946, 114703 (2019). [arXiv:1905.00477 [hep-th]]

  92. C. Ding, C. Liu, R. Casana, A. Cavalcante, Exact Kerr-like solution and its shadow in a gravity model with spontaneous Lorentz symmetry breaking. Eur. Phys. J. C 80, 178 (2020). [arXiv:1910.02674 [gr-qc]]

    Article  ADS  Google Scholar 

  93. Z. Li, A. övgün, Finite-distance gravitational deflection of massive particles by a Kerr-like black hole in the Einstein-bumblebee gravity model, Phys. Rev. D 101, 024040 (2020). [arXiv:2001.02074 [gr-qc]]

  94. A. Ali, K. Saifullah, Lorentz symmetry violating BTZ black holes in massive gravity (2020). arXiv:2004.02005 [gr-qc]

  95. S. Chen, M. Wang, J. Jing, Polarization effects in Kerr black hole shadow due to the coupling between photon and Einstein-bumblebee field. JHEP 2007, 054 (2020). [arXiv:2004.08857 [gr-qc]]

    Article  ADS  MATH  Google Scholar 

  96. R.V. Maluf, J.C.S. Neves, Black holes with a cosmological constant in bumblebee gravity. Phys. Rev. D 103, 044002 (2021). [arXiv:2011.12841 [gr-qc]]

    Article  ADS  MathSciNet  Google Scholar 

  97. S.K. Jha, A. Rahaman, Bumblebee gravity with a Kerr–Sen-like solution and its Shadow. Eur. Phys. J. C 81, 345 (2021). [arXiv:2011.14916 [gr-qc]]

    Article  ADS  Google Scholar 

  98. C. Ding, X. Chen, X. Fu, Einstein-Gauss-Bonnet gravity coupled to bumblebee field in four dimensional spacetime (2021). arXiv:2102.13335 [gr-qc]

  99. I.D.D. Carvalho, G. Alencar, W.M. Mendes, R.R. Landim, The gravitational bending angle by static and spherically symmetric black holes in bumblebee gravity (2021). arXiv:2103.03845 [gr-qc]

  100. S.K. Jha, S. Aziz, A. Rahaman, Optical properties of Lorentz violating Kerr-Sen-like spacetime in the presence of plasma (2021). arXiv:2103.17021 [gr-qc]

  101. B. Carter, Global structure of the Kerr family of gravitational fields. Phys. Rev. 174, 1559 (1968)

    Article  ADS  MATH  Google Scholar 

  102. W. Klingenberg, A Course in Differential Geometry (Springer, New York, 1978). https://doi.org/10.1007/978-1-4612-9923-3

    Book  MATH  Google Scholar 

  103. J.L. Synge, Relativity: The General Theory (North Holland, Amsterdam, 1960)

    MATH  Google Scholar 

  104. F. Mertens, A.P. Lobanov, R.C. Walker, P.E. Hardee, R. Craig Walker, P.E. Hardee, F.B. Davies, C. Ly, W. Junor, Kinematics of the jet in M 87 on scales of 100–1000 Schwarzschild radii, A &A 595, A54 (2016) [arXiv:1608.05063 [astro-ph.HE]]

  105. C. Bambi, K. Freese, S. Vagnozzi, L. Visinelli, Testing the rotational nature of the supermassive object M87* from the circularity and size of its first image. Phys. Rev. D 100, 044057 (2019). [arXiv:1904.12983 [gr-qc]]

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank Dr. Zi-Chao Lin for helpful discussions. This work was supported by the National Natural Science Foundation of China (Grants No. 12075103 and No. 11675064), the 111 Project (Grant No. B20063), and the Fundamental Research Funds for the Central Universities (No. Lzujbky-2019-ct06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shao-Wen Wei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, HM., Wei, SW. Shadow cast by Kerr-like black hole in the presence of plasma in Einstein-bumblebee gravity. Eur. Phys. J. Plus 137, 571 (2022). https://doi.org/10.1140/epjp/s13360-022-02785-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02785-6

Navigation