Skip to main content
Log in

Analytical solutions of the forced vibration of Timoshenko micro/nano-beam under axial tensions supported on Winkler–Pasternak foundation

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Axially loaded micro/nano-beams supported on foundations are extensively applied in micro/nano-medicine field. This paper aims to derive analytical solutions of the forced vibration of Timoshenko micro/nano-beam under axial tensions supported on Winkler–Pasternak foundation subjected to a harmonic load. Timoshenko beam theory and nonlocal strain gradient theory are employed to describe a micro/nano-beam model. Based on Hamilton’s principle, the vibration equations of the micro/nano-beam are derived. Directions of axial tensions during the deformation of the micro/nano-beam are described by transition parameters. Using the weighted residual method, the variational consistency boundary conditions (BCs) can be derived according to the vibration equations. Explicit expressions of steady-state dynamic responses of the micro/nano-beam are obtained by Green's function method and superposition principle. Numerical examples are performed to verify present solutions by some published articles. Influences of some important parameters, such as transition parameter, nonlocal parameter, and strain gradient parameter, on dynamic behaviors of the system are also investigated. Furthermore, numerical results reveal that the variational consistency BCs and the transition parameter produce significant effects on vibration characteristics of the system. More specially, the variational consistency BCs change the vibration shape of simply supported BCs into that of clamed-clamed BCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability statement

The data generated during the current study are available from the corresponding author on reasonable request.

References

  1. H. Zhang, X.S. Zhang, X. Cheng, Y. Liu, M. Han, X. Xue et al., A flexible and implantable piezoelectric generator harvesting energy from the pulsation of ascending aorta: In vitro and in vivo studies. Nano Energy 12, 296–304 (2015)

    Article  Google Scholar 

  2. X.Z. Chen, M. Hoop, N. Shamsudhin, T. Huang, B. Ozkale, Q. Li et al., Hybrid magnetoelectric nanowires for nanorobotic applications: fabrication, magnetoelectric coupling, and magnetically assisted in vitro targeted drug delivery. Adv. Mater. 29, 1605458 (2017)

    Article  Google Scholar 

  3. B.E.-F. Ávila, P. Angsantikul, J. Li, M.A. Lopez-Ramirez, D. Ramírez-Herrera, S. Thamphiwatana et al., Micromotor-enabled active drug delivery for in vivo treatment of stomach infection. Nat. Commun. 8, 272 (2017)

    Article  ADS  Google Scholar 

  4. M. Ghadiri, M. Soltanpour, A. Yazdi, M. Safi, Studying the influence of surface effects on vibration behavior of size-dependent cracked FG Timoshenko nanobeam considering nonlocal elasticity and elastic foundation. Appl. Phys. A. 122, 520 (2016)

    Article  ADS  Google Scholar 

  5. M. Reza Barati, H. Shahverdi, Small-scale effects on the dynamic response of inhomogeneous nanobeams on elastic substrate under uniform dynamic load. Eur. Phys. J. Plus. 132, 167 (2017)

    Article  Google Scholar 

  6. H. Mohammadi, M. Mahzoon, M. Mohammadi, M. Mohammadi, Postbuckling instability of nonlinear nanobeam with geometric imperfection embedded in elastic foundation. Nonlinear Dyn. 76, 2005–2016 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. A.C. Eringen, On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54, 4703–4710 (1983)

    Article  ADS  Google Scholar 

  8. R.D. Mindlin, Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16, 51–78 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  9. R.D. Mindlin, Second gradient of strain and surface-tension in linear elasticity. Int. J. Solids Struct. 1, 417–438 (1965)

    Article  Google Scholar 

  10. F. Yang, A.C.M. Chong, D.C.C. Lam, P. Tong, Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39, 2731–2743 (2002)

    Article  MATH  Google Scholar 

  11. K. Kiani, Free vibrations of elastically embedded stocky single-walled carbon nanotubes acted upon by a longitudinally varying magnetic field. Meccanica 50, 3041–3067 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. H. Arvin, Free vibration analysis of micro rotating beams based on the strain gradient theory using the differential transform method: Timoshenko versus Euler–Bernoulli beam models. Eur. J. Mech. A Solid. 65, 336–348 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. S. Karparvarfard, M. Asghari, R. Vatankhah, A geometrically nonlinear beam model based on the second strain gradient theory. Int. J. Eng. Sci. 91, 63–75 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Z. Bo, Y. He, D. Liu, Z. Gan, S. Lei, A novel size-dependent functionally graded curved mircobeam model based on the strain gradient elasticity theory. Compos. Struct. 106, 374–392 (2013)

    Article  Google Scholar 

  15. Y.P. Liu, J.N. Reddy, A nonlocal curved beam model based on a modified couple stress theory. Int. J. Struct. Stab. Dyn. 11, 495–512 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. I. Esen, A.A. Daikh, M.A. Eltaher, Dynamic response of nonlocal strain gradient FG nanobeam reinforced by carbon nanotubes under moving point load. Eur. Phys. J. Plus 136, 458 (2021)

    Article  Google Scholar 

  17. H.-T. Thai, A nonlocal beam theory for bending, buckling, and vibration of nanobeams. Int. J. Eng. Sci. 52, 56–64 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. H.-T. Thai, T.P. Vo, A nonlocal sinusoidal shear deformation beam theory with application to bending, buckling, and vibration of nanobeams. Int. J. Eng. Sci. 54, 58–66 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. D.C.C. Lam, F. Yang, A.C.M. Chong, J. Wang, P. Tong, Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids 51, 1477–1508 (2003)

    Article  ADS  MATH  Google Scholar 

  20. C.W. Lim, G. Zhang, J.N. Reddy, A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation. J. Mech. Phys. Solids 78, 298–313 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. A.A. Abdelrahman, I. Esen, C. Özarpa, M.A. Eltaher, Dynamics of perforated nanobeams subject to moving mass using the nonlocal strain gradient theory. Appl. Math. Model. 96, 215–235 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  22. P. Jankowski, K.K. Żur, J. Kim, C.W. Lim, J.N. Reddy, On the piezoelectric effect on stability of symmetric FGM porous nanobeams. Compos. Struct. 267, 113880 (2021)

    Article  Google Scholar 

  23. I. Esen, C. Özarpa, M.A. Eltaher, Free vibration of a cracked FG microbeam embedded in an elastic matrix and exposed to magnetic field in a thermal environment. Compos. Struct. 261, 113552 (2021)

    Article  Google Scholar 

  24. J.N. Reddy, J. Kim, A nonlinear modified couple stress-based third-order theory of functionally graded plates. Compos. Struct. 94, 1128–1143 (2012)

    Article  Google Scholar 

  25. Z. He, J. Xue, S. Yao, Y. Wu, F. Xia, A size-dependent model for shear deformable laminated micro-nano plates based on couple stress theory. Compos. Struct. 259, 113457 (2021)

    Article  Google Scholar 

  26. Y. Yang, Y. Dong, Y. Li, Buckling of piezoelectric sandwich microplates with arbitrary in-plane BCs rested on foundation: effect of hygro-thermo-electro-elastic field. Eur. Phys. J. Plus 135, 61 (2020)

    Article  ADS  Google Scholar 

  27. M.L. Dehsaraji, M. Arefi, A. Loghman, Size dependent free vibration analysis of functionally graded piezoelectric micro/nano shell based on modified couple stress theory with considering thickness stretching effect. Def. Technol. 17, 119–134 (2021)

    Article  Google Scholar 

  28. S. Ghareghani, A. Loghman, M. Mohammadimehr, Analysis of FGM micro cylindrical shell with variable thickness using Cooper Naghdi model: bending and buckling solutions. Mech. Res. Commun. 115, 103739 (2021)

    Article  Google Scholar 

  29. L. Lu, X. Guo, J. Zhao, A unified nonlocal strain gradient model for nanobeams and the importance of higher order terms. Int. J. Eng. Sci. 119, 265–277 (2017)

    Article  Google Scholar 

  30. X.J. Xu, M.L. Zheng, Analytical solutions for buckling of size-dependent Timoshenko beams. Appl. Math. Mech.-Engl. 40, 953–976 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  31. M. Mohammadian, M.H. Abolbashari, S.M. Hosseini, Application of hetero junction CNTs as mass nanosensor using nonlocal strain gradient theory: an analytical solution. Appl. Math. Model. 76, 26–49 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  32. L. Li, X. Li, Y. Hu, Free vibration analysis of nonlocal strain gradient beams made of functionally graded material. Int. J. Eng. Sci. 102, 77–92 (2016)

    Article  MATH  Google Scholar 

  33. L. Li, Y. Hu, Nonlinear bending and free vibration analyses of nonlocal strain gradient beams made of functionally graded material. Int. J. Eng. Sci. 107, 77–97 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  34. H. Liu, Z. Lv, H. Wu, Nonlinear free vibration of geometrically imperfect functionally graded sandwich nanobeams based on nonlocal strain gradient theory. Compos. Struct. 214, 47–61 (2019)

    Article  Google Scholar 

  35. B. Gu, T. He, Investigation of thermoelastic wave propagation in Euler–Bernoulli beam via nonlocal strain gradient elasticity and G-N theory. J. Vib. Eng. Technol. 9, 715–724 (2021)

    Article  Google Scholar 

  36. K. Wu, Z. Xing, Stability of imperfect prestressed stayed beam-columns under combined axial load and bending. Eng. Struct. 245, 112891 (2021)

    Article  Google Scholar 

  37. J. Fang, S. Zheng, J. Xiao, X. Zhang, Vibration and thermal buckling analysis of rotating nonlocal functionally graded nanobeams in thermal environment. Aerosp. Sci. Technol. 106, 106146 (2020)

    Article  Google Scholar 

  38. A. Naderi, M. Fakher, S. Hosseini-Hashemi, On the local/nonlocal piezoelectric nanobeams: vibration, buckling, and energy harvesting. Mech. Syst. Signal. Process. 151, 107432 (2021)

    Article  Google Scholar 

  39. F. Ebrahimi, M. Reza Barati, Vibration analysis of nonlocal beams made of functionally graded material in thermal environment. Eur. Phys. J. Plus 131, 279 (2016)

    Article  Google Scholar 

  40. S. Ebrahimi-Nejad, G.R. Shaghaghi, F. Miraskari, M. Kheybari, Size-dependent vibration in two-directional functionally graded porous nanobeams under hygro-thermo-mechanical loading. Eur. Phys. J. Plus 134, 465 (2019)

    Article  Google Scholar 

  41. X. Zhao, B. Chen, Y.H. Li, W.D. Zhu, F.J. Nkiegaing, Y.B. Shao, Forced vibration analysis of Timoshenko double-beam system under compressive axial load by means of Green’s functions. J. Sound. Vib. 464, 115001 (2020)

    Article  Google Scholar 

  42. C. Mei, Y. Karpenko, S. Moody, D. Allen, Analytical approach to free and forced vibrations of axially loaded cracked Timoshenko beams. J. Sound. Vib. 291, 1041–1060 (2006)

    Article  ADS  Google Scholar 

  43. H. Abramovich, Natural frequencies of Timoshenko beams under compressive axial loads. J. Sound. Vib. 157, 183–189 (1992)

    Article  ADS  MATH  Google Scholar 

  44. H. Saito, K. Otomi, Vibration and stability of elastically supported beams carrying an attached mass under axial and tangential loads. J. Sound. Vib. 62, 257–266 (1979)

    Article  ADS  Google Scholar 

  45. K. Sato, On the governing equations for vibration and stability of a Timoshenko beam: Hamilton’s principle. J. Sound. Vib. 145, 338–340 (1991)

    Article  ADS  Google Scholar 

  46. T. Chen, G.Y. Su, Y.S. Shen, B. Gao, X.Y. Li, R. Müller, Unified Green’s functions of forced vibration of axially loaded Timoshenko beam: transition parameter. Int. J. Mech. Sci. 113, 211–220 (2016)

    Article  Google Scholar 

  47. X.Y. Li, G.Y. Su, Buckling of nanowires: a continuum model with a transition parameter. J. Phys. D. Appl. Phys. 51, 275301 (2018)

    Article  ADS  Google Scholar 

  48. L. Li, Y. Hu, Buckling analysis of size-dependent nonlinear beams based on a nonlocal strain gradient theory. Int. J. Eng. Sci. 97, 84–94 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  49. M.H. Jalaei, A.G. Arani, H. Nguyen-Xuan, Investigation of thermal and magnetic field effects on the dynamic instability of FG Timoshenko nanobeam employing nonlocal strain gradient theory. Int. J. Mech. Sci. 105043, 161–162 (2019)

    Google Scholar 

  50. J.P. Shen, P.Y. Wang, C. Li, Y.Y. Wang, New observations on transverse dynamics of microtubules based on nonlocal strain gradient theory. Compos. Struct. 225, 111036 (2019)

    Article  Google Scholar 

  51. M.H. Ghayesh, A. Farajpour, Nonlinear mechanics of nanoscale tubes via nonlocal strain gradient theory. Int. J. Eng. Sci. 129, 84–95 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  52. T. Luo, Q. Mao, S. Zeng, K. Wang, B. Wang, J. Wu et al., Scale effect on the nonlinear vibration of piezoelectric sandwich nanobeams on winkler foundation. J. Vib. Eng. Technol. 9, 1289–1303 (2021)

    Article  Google Scholar 

  53. F. Ebrahimi, M.R. Barati, Hygrothermal effects on vibration characteristics of viscoelastic FG nanobeams based on nonlocal strain gradient theory. Compos. Struct. 159, 433–444 (2017)

    Article  Google Scholar 

  54. M. Fakher, S. Behdad, A. Naderi, S. Hosseini-Hashemi, Thermal vibration and buckling analysis of two-phase nanobeams embedded in size dependent elastic medium. Int. J. Mech. Sci. 171, 105381 (2020)

    Article  Google Scholar 

  55. Y. Gao, W.-S. Xiao, H. Zhu, Snap-buckling of functionally graded multilayer graphene platelet-reinforced composite curved nanobeams with geometrical imperfections. Eur. J. Mech. A Solids 82, 103993 (2020)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  56. P. Jankowski, K.K. Żur, J. Kim, J.N. Reddy, On the bifurcation buckling and vibration of porous nanobeams. Compos. Struct. 250, 112632 (2020)

    Article  Google Scholar 

  57. M. Abu-Hilal, Forced vibration of Euler–Bernoulli beams by means of dynamic Green functions. J. Sound. Vib. 267, 191–207 (2003)

    Article  ADS  MATH  Google Scholar 

  58. X.Y. Li, X. Zhao, Y.H. Li, Green’s functions of the forced vibration of Timoshenko beams with damping effect. J. Sound. Vib. 333, 1781–1795 (2014)

    Article  ADS  Google Scholar 

  59. P.A. Djondjorov, V.M. Vassilev, On the dynamic stability of a cantilever under tangential follower force according to Timoshenko beam theory. J. Sound. Vib. 311, 1431–1437 (2008)

    Article  ADS  Google Scholar 

  60. L. Li, Y.J. Hu, X.B. Li, Longitudinal vibration of size-dependent rods via nonlocal strain gradient theory. Int. J. Mech. Sci. 115, 135–144 (2016)

    Article  Google Scholar 

  61. L. Lu, X. Guo, J. Zhao, Size-dependent vibration analysis of nanobeams based on the nonlocal strain gradient theory. Int. J. Eng. Sci. 116, 12–24 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 11872319 and 12072301) and Sichuan Youth Scientific and Technological Innovation Research Team of the Engineering Structural Safety Assessment and Disaster Prevention Technology (Grant No. 2019JDTD0017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang Zhao.

Appendix

Appendix

According to Eqs. (43)–(44), the following forms are obtained by inverse Laplace transform:

$$ \begin{aligned} & L^{ - 1} \left( {\frac{{\left( {s^{4} b_{0} + s^{2} b_{1} + b_{2} } \right)\left( {a_{5} s^{2} + a_{6} } \right)e^{{ - s\xi_{0} }} }}{{\prod\nolimits_{i = 1}^{8} {\left( {s - s_{i} } \right)} }}} \right) \\ & \quad { = }\sum\nolimits_{i = 1}^{8} {H\left( {\xi - \xi_{0} } \right)} A_{i} \left( {\xi - \xi_{0} } \right)\left[ {\left( {s_{i}^{4} b_{0} + s_{i}^{2} b_{1} + b_{2} } \right)\left( {a_{5} s_{i}^{2} + a_{6} } \right)} \right], \\ \end{aligned} $$
(A1)
$$ \begin{aligned} & L^{ - 1} \left( {\frac{{\left( {s^{4} b_{0} + s^{2} b_{1} + b_{2} } \right)\left( {s^{3} a_{0} + sa_{1} } \right) - \left( {s^{3} a_{3} + sa_{4} } \right)\left( {sb_{3} + b_{4} } \right)}}{{\prod\nolimits_{i = 1}^{8} {\left( {s - s_{i} } \right)} }}} \right) \\ & \quad { = }\sum\nolimits_{i = 1}^{8} {A_{i} \left( \xi \right)\left[ \begin{array}{llll} \left( {s_{i}^{4} b_{0} + s_{i}^{2} b_{1} + b_{2} } \right)\left( {s_{i}^{3} a_{0} + s_{i} a_{1} } \right) \hfill \\ - \left( {s_{i}^{3} a_{3} + s_{i} a_{4} } \right)\left( {s_{i} b_{3} + b_{4} } \right) \hfill \\ \end{array} \right]} , \\ \end{aligned} $$
(A2)
$$ \begin{aligned} & L^{ - 1} \left( {\frac{{\left( {s^{4} b_{0} + s^{2} b_{1} + b_{2} } \right)\left( {s^{2} a_{0} + a_{1} } \right) - \left( {s^{3} a_{3} + sa_{4} } \right)sb_{3} }}{{\prod\nolimits_{i = 1}^{8} {\left( {s - s_{i} } \right)} }}} \right) \\ \,& \quad { = }\sum\nolimits_{i = 1}^{8} {A_{i} \left( \xi \right)\left[ {\left( {s_{i}^{4} b_{0} + s_{i}^{2} b_{1} + b_{2} } \right)\left( {s_{i}^{2} a_{0} + a_{1} } \right) - \left( {s_{i}^{3} a_{3} + s_{i} a_{4} } \right)s_{i} b_{3} } \right]} , \\ \end{aligned} $$
(A3)
$$ \begin{aligned} & L^{ - 1} \left( {\frac{{\left( {s^{4} b_{0} + s^{2} b_{1} + b_{2} } \right)sa_{0} - \left( {s^{3} a_{3} + sa_{4} } \right)b_{3} }}{{\prod\nolimits_{i = 1}^{8} {\left( {s - s_{i} } \right)} }}} \right) \\ & \quad { = }\sum\nolimits_{i = 1}^{8} {A_{i} \left( \xi \right)\left[ {\left( {s_{i}^{4} b_{0} + s_{i}^{2} b_{1} + b_{2} } \right)s_{i} a_{0} - \left( {s_{i}^{3} a_{3} + s_{i} a_{4} } \right)b_{3} } \right]} , \\ \end{aligned} $$
(A4)
$$ L^{ - 1} \left( {\frac{{s^{4} b_{0} + s^{2} b_{1} + b_{2} }}{{\prod\nolimits_{i = 1}^{8} {\left( {s - s_{i} } \right)} }}} \right){ = }\sum\nolimits_{i = 1}^{8} {A_{i} \left( \xi \right)\left( {s_{i}^{4} b_{0} + s_{i}^{2} b_{1} + b_{2} } \right)} , $$
(A5)
$$ \begin{aligned} & L^{ - 1} \left( {\frac{{\left( {s^{4} b_{0} + s^{2} b_{1} + b_{2} } \right)\left( {s^{2} a_{3} + a_{4} } \right) - \left( {s^{3} a_{3} + sa_{4} } \right)\left( {s^{3} b_{0} + sb_{1} } \right)}}{{\prod\nolimits_{i = 1}^{8} {\left( {s - s_{i} } \right)} }}} \right) \\ & \quad { = }\sum\nolimits_{i = 1}^{8} {A_{i} \left( \xi \right)\left[ {\left( {s_{i}^{4} b_{0} + s_{i}^{2} b_{1} + b_{2} } \right)\left( {s_{i}^{2} a_{3} + a_{4} } \right) - \left( {s_{i}^{3} a_{3} + sa_{4} } \right)\left( {s_{i}^{3} b_{0} + s_{i} b_{1} } \right)} \right]} , \\ \end{aligned} $$
(A6)
$$ \begin{aligned} & L^{ - 1} \left( {\frac{{\left( {s^{4} b_{0} + s^{2} b_{1} + b_{2} } \right)sa_{3} - \left( {s^{3} a_{3} + sa_{4} } \right)\left( {s^{2} b_{0} + b_{1} } \right)}}{{\prod\nolimits_{i = 1}^{8} {\left( {s - s_{i} } \right)} }}} \right) \\ & \quad { = }\sum\nolimits_{i = 1}^{8} {A_{i} \left( \xi \right)\left[ {\left( {s_{i}^{4} b_{0} + s_{i}^{2} b_{1} + b_{2} } \right)s_{i} a_{3} - \left( {s_{i}^{3} a_{3} + s_{i} a_{4} } \right)\left( {s_{i}^{2} b_{0} + b_{1} } \right)} \right]} , \\ \end{aligned} $$
(A7)
$$ \begin{aligned} & L^{ - 1} \left( {\frac{{\left( {s^{4} b_{0} + s^{2} b_{1} + b_{2} } \right)a_{3} - \left( {s^{3} a_{3} + sa_{4} } \right)sb_{0} }}{{\prod\nolimits_{i = 1}^{8} {\left( {s - s_{i} } \right)} }}} \right) \\ & \quad { = }\sum\nolimits_{i = 1}^{8} {A_{i} \left( \xi \right)\left[ {\left( {s_{i}^{4} b_{0} + s_{i}^{2} b_{1} + b_{2} } \right)a_{3} - \left( {s_{i}^{3} a_{3} + s_{i} a_{4} } \right)s_{i} b_{0} } \right]} , \\ \end{aligned} $$
(A8)
$$ L^{ - 1} \left( {\frac{{ - \left( {s^{3} a_{3} + sa_{4} } \right)b_{0} }}{{\prod\nolimits_{i = 1}^{8} {\left( {s - s_{i} } \right)} }}} \right){ = }\sum\nolimits_{i = 1}^{8} {A_{i} \left( \xi \right)\left[ { - \left( {s_{i}^{3} a_{3} + s_{i} a_{4} } \right)b_{0} } \right]} , $$
(A9)
$$ \begin{aligned} & L^{ - 1} \left( {\frac{{ - \left( {s^{3} b_{3} + sb_{4} } \right)\left( {a_{5} s^{2} + a_{6} } \right)e^{{ - s\xi_{0} }} }}{{\prod\nolimits_{i = 1}^{8} {\left( {s - s_{i} } \right)} }}} \right) \\ & \quad { = }\sum\nolimits_{i = 1}^{8} {H\left( {\xi - \xi_{0} } \right)} A_{i} \left( {\xi - \xi_{0} } \right)\left[ { - \left( {s_{i}^{3} b_{3} + sb_{4} } \right)\left( {a_{5} s_{i}^{2} + a_{6} } \right)} \right], \\ \end{aligned} $$
(A10)
$$ \begin{aligned} & L^{ - 1} \left( {\frac{{\left( {s^{4} a_{0} + s^{2} a_{1} + a_{2} } \right)\left( {sb_{3} + b_{4} } \right) - \left( {s^{3} b_{3} + sb_{4} } \right)\left( {s^{3} a_{0} + sa_{1} } \right)}}{{\prod\nolimits_{i = 1}^{8} {\left( {s - s_{i} } \right)} }}} \right) \\ & \quad { = }\sum\nolimits_{i = 1}^{8} {A_{i} \left( \xi \right)\left[ {\left( {s_{i}^{4} a_{0} + s_{i}^{2} a_{1} + a_{2} } \right)\left( {s_{i} b_{3} + b_{4} } \right) - \left( {s_{i}^{3} b_{3} + s_{i} b_{4} } \right)\left( {s_{i}^{3} a_{0} + s_{i} a_{1} } \right)} \right]} , \\ \end{aligned} $$
(A11)
$$ \begin{aligned} & L^{ - 1} \left( {\frac{{\left( {s^{4} a_{0} + s^{2} a_{1} + a_{2} } \right)sb_{3} - \left( {s^{3} b_{3} + sb_{4} } \right)\left( {s^{2} a_{0} + a_{1} } \right)}}{{\prod\nolimits_{i = 1}^{8} {\left( {s - s_{i} } \right)} }}} \right) \\ & \quad { = }\sum\nolimits_{i = 1}^{8} {A_{i} \left( \xi \right)\left[ {\left( {s_{i}^{4} a_{0} + s_{i}^{2} a_{1} + a_{2} } \right)s_{i} b_{3} - \left( {s_{i}^{3} b_{3} + s_{i} b_{4} } \right)\left( {s_{i}^{2} a_{0} + a_{1} } \right)} \right]} , \\ \end{aligned} $$
(A12)
$$ \begin{aligned} & L^{ - 1} \left( {\frac{{\left( {s^{4} a_{0} + s^{2} a_{1} + a_{2} } \right)b_{3} - \left( {s^{3} b_{3} + sb_{4} } \right)sa_{0} }}{{\prod\nolimits_{i = 1}^{8} {\left( {s - s_{i} } \right)} }}} \right) \\ & \quad { = }\sum\nolimits_{i = 1}^{8} {A_{i} \left( \xi \right)\left[ {\left( {s_{i}^{4} a_{0} + s_{i}^{2} a_{1} + a_{2} } \right)b_{3} - \left( {s_{i}^{3} b_{3} + s_{i} b_{4} } \right)s_{i} a_{0} } \right]} , \\ \end{aligned} $$
(A13)
$$ L^{ - 1} \left( {\frac{{ - \left( {s^{3} b_{3} + sb_{4} } \right)a_{0} }}{{\prod\nolimits_{i = 1}^{8} {\left( {s - s_{i} } \right)} }}} \right){ = }\sum\nolimits_{i = 1}^{8} {A_{i} \left( \xi \right)\left[ { - \left( {s_{i}^{3} b_{3} + s_{i} b_{4} } \right)a_{0} } \right]} , $$
(A14)
$$ \begin{aligned} & L^{ - 1} \left( {\frac{{\left( {s^{4} a_{0} + s^{2} a_{1} + a_{2} } \right)\left( {s^{3} b_{0} + sb_{1} } \right) - \left( {s^{3} b_{3} + sb_{4} } \right)\left( {s^{2} a_{3} + a_{4} } \right)}}{{\prod\nolimits_{i = 1}^{8} {\left( {s - s_{i} } \right)} }}} \right) \\ & \quad { = }\sum\nolimits_{i = 1}^{8} {A_{i} \left( \xi \right)\left[ {\left( {s_{i}^{4} a_{0} + s_{i}^{2} a_{1} + a_{2} } \right)\left( {s_{i}^{3} b_{0} + s_{i} b_{1} } \right) - \left( {s_{i}^{3} b_{3} + s_{i} b_{4} } \right)\left( {s_{i}^{2} a_{3} + a_{4} } \right)} \right]} , \\ \end{aligned} $$
(A15)
$$ \begin{aligned} & L^{ - 1} \left( {\frac{{\left( {s^{4} a_{0} + s^{2} a_{1} + a_{2} } \right)\left( {s^{2} b_{0} + b_{1} } \right) - \left( {s^{3} b_{3} + sb_{4} } \right)sa_{3} }}{{\prod\nolimits_{i = 1}^{8} {\left( {s - s_{i} } \right)} }}} \right) \\ & \quad { = }\sum\nolimits_{i = 1}^{8} {A_{i} \left( \xi \right)\left[ {\left( {s_{i}^{4} a_{0} + s_{i}^{2} a_{1} + a_{2} } \right)\left( {s_{i}^{2} b_{0} + b_{1} } \right) - \left( {s_{i}^{3} b_{3} + s_{i} b_{4} } \right)s_{i} a_{3} } \right]} , \\ \end{aligned} $$
(A16)
$$ \begin{aligned} & L^{ - 1} \left( {\frac{{\left( {s^{4} a_{0} + s^{2} a_{1} + a_{2} } \right)sb_{0} - \left( {s^{3} b_{3} + sb_{4} } \right)a_{3} }}{{\prod\nolimits_{i = 1}^{8} {\left( {s - s_{i} } \right)} }}} \right) \\ & \quad { = }\sum\nolimits_{i = 1}^{8} {A_{i} \left( \xi \right)\left[ {\left( {s_{i}^{4} a_{0} + s_{i}^{2} a_{1} + a_{2} } \right)s_{i} b_{0} - \left( {s_{i}^{3} b_{3} + s_{i} b_{4} } \right)a_{3} } \right]} , \\ \end{aligned} $$
(A17)
$$ L^{ - 1} \left( {\frac{{s^{4} a_{0} + s^{2} a_{1} + a_{2} }}{{\prod\nolimits_{i = 1}^{8} {\left( {s - s_{i} } \right)} }}} \right){ = }\sum\nolimits_{i = 1}^{8} {A_{i} \left( \xi \right)\left( {s_{i}^{4} a_{0} + s_{i}^{2} a_{1} + a_{2} } \right)} , $$
(A18)

where

$$ H\left( {\xi - \xi_{0} } \right){ = }\left\{ {\begin{array}{*{20}c} {1,} & {\xi \ge \xi_{0} } \\ {0,} & {\xi < \xi_{0} } \\ \end{array} } \right., $$
(A19)
$$ A_{i} \left( x \right) = \frac{{e^{{s_{i} x}} }}{{\left( {s_{i} - s_{1} } \right)...\left( {s_{i} - s_{i - 1} } \right)\left( {s_{i} - s_{i + 1} } \right)...\left( {s_{i} - s_{8} } \right)}} \, \left( {i = 1 \sim 8} \right). $$
(A20)

From Eqs. (A1)–(A20) and Eq. (43), Green’s functions can be derived

$$ \begin{aligned} W\left( {\xi ,\xi_{0} } \right) & = H\left( {\xi - \xi_{0} } \right)\varphi_{11} \left( {\xi - \xi_{0} } \right){ + }\varphi_{12} \left( \xi \right)W\left( 0 \right) \\ & \quad + \varphi_{13} \left( \xi \right)W^{\prime}\left( 0 \right) + \varphi_{14} \left( \xi \right)W^{\prime\prime}\left( 0 \right) \\ & \quad + \varphi_{15} \left( \xi \right)W^{\prime\prime\prime}\left( 0 \right) + \varphi_{16} \left( \xi \right)\Phi \left( 0 \right) + \varphi_{17} \left( \xi \right)\Phi^{\prime}\left( 0 \right) \\ & \quad + \varphi_{18} \left( \xi \right)\Phi^{\prime\prime}\left( 0 \right) + \varphi_{19} \left( \xi \right)\Phi^{\prime\prime\prime}\left( 0 \right), \\ \end{aligned} $$
(A21)
$$ \begin{aligned} \Phi \left( {\xi ,\xi_{0} } \right) & = H\left( {\xi - \xi_{0} } \right)\varphi_{21} \left( {\xi - \xi_{0} } \right) + \varphi_{22} \left( \xi \right)W\left( 0 \right) \\ & \quad + \varphi_{23} \left( \xi \right)W^{\prime}\left( 0 \right) + \varphi_{24} \left( \xi \right)W^{\prime\prime}\left( 0 \right) \\ & \quad + \varphi_{25} \left( \xi \right)W^{\prime\prime\prime}\left( 0 \right) + \varphi_{26} \left( \xi \right)\Phi \left( 0 \right) + \varphi_{27} \left( x \right)\Phi^{\prime}\left( 0 \right) \\ & \quad + \varphi_{28} \left( \xi \right)\Phi^{\prime\prime}\left( 0 \right) + \varphi_{29} \left( \xi \right)\Phi^{\prime\prime\prime}\left( 0 \right). \\ \end{aligned} $$
(A22)

The expression of φmn (m = 1, 2, n = 1 ~ 9) in Eqs. (A21) and (A22) is listed as follows:

$$ \begin{aligned} \varphi_{11} & { = }\sum\limits_{i = 1}^{8} {A_{i} \left( \xi \right)\left[ {\left( {s_{i}^{4} b_{0} + s_{i}^{2} b_{1} + b_{2} } \right)\left( {a_{5} s_{i}^{2} + a_{6} } \right)} \right]} , \\ \varphi_{12} & { = }\sum\limits_{i = 1}^{8} {A_{i} \left( \xi \right)\left[ {\left( {s_{i}^{4} b_{0} + s_{i}^{2} b_{1} + b_{2} } \right)\left( {s_{i}^{3} a_{0} + s_{i} a_{1} } \right) - \left( {s_{i}^{3} a_{3} + s_{i} a_{4} } \right)\left( {s_{i} b_{3} + b_{4} } \right)} \right]} , \\ \varphi_{13} & { = }\sum\limits_{i = 1}^{8} {A_{i} \left( \xi \right)\left[ {\left( {s_{i}^{4} b_{0} + s_{i}^{2} b_{1} + b_{2} } \right)\left( {s_{i}^{2} a_{0} + a_{1} } \right) - \left( {s_{i}^{3} a_{3} + s_{i} a_{4} } \right)s_{i} b_{3} } \right]} , \\ \varphi_{14} & { = }\sum\limits_{i = 1}^{8} {A_{i} \left( \xi \right)\left[ {\left( {s_{i}^{4} b_{0} + s_{i}^{2} b_{1} + b_{2} } \right)s_{i} a_{0} - \left( {s_{i}^{3} a_{3} + s_{i} a_{4} } \right)b_{3} } \right]} , \\ \varphi_{15} & { = }\sum\limits_{i = 1}^{8} {A_{i} \left( \xi \right)\left( {s_{i}^{4} b_{0} + s_{i}^{2} b_{1} + b_{2} } \right)} , \\ \varphi_{16} & { = }\sum\limits_{i = 1}^{8} {A_{i} \left( \xi \right)\left[ {\left( {s_{i}^{4} b_{0} + s_{i}^{2} b_{1} + b_{2} } \right)\left( {s_{i}^{2} a_{3} + a_{4} } \right) - \left( {s_{i}^{3} a_{3} + sa_{4} } \right)\left( {s_{i}^{3} b_{0} + s_{i} b_{1} } \right)} \right]} , \\ \varphi_{17} & { = }\sum\limits_{i = 1}^{8} {A_{i} \left( \xi \right)\left[ {\left( {s_{i}^{4} b_{0} + s_{i}^{2} b_{1} + b_{2} } \right)s_{i} a_{3} - \left( {s_{i}^{3} a_{3} + s_{i} a_{4} } \right)\left( {s_{i}^{2} b_{0} + b_{1} } \right)} \right]} , \\ \varphi_{18} & { = }\sum\limits_{i = 1}^{8} {A_{i} \left( \xi \right)\left[ {\left( {s_{i}^{4} b_{0} + s_{i}^{2} b_{1} + b_{2} } \right)a_{3} - \left( {s_{i}^{3} a_{3} + s_{i} a_{4} } \right)s_{i} b_{0} } \right]} , \\ \varphi_{19} & { = }\sum\limits_{i = 1}^{8} {A_{i} \left( \xi \right)\left[ { - \left( {s_{i}^{3} a_{3} + s_{i} a_{4} } \right)b_{0} } \right]} , \\ \end{aligned} $$
(A23)
$$ \begin{aligned} \varphi_{21} & { = }\sum\limits_{i = 1}^{8} {A_{i} \left( \xi \right)\left[ { - \left( {s_{i}^{3} b_{3} + sb_{4} } \right)\left( {a_{5} s_{i}^{2} + a_{6} } \right)} \right]} , \\ \varphi_{22} & { = }\sum\limits_{i = 1}^{8} {A_{i} \left( \xi \right)\left[ {\left( {s_{i}^{4} a_{0} + s_{i}^{2} a_{1} + a_{2} } \right)\left( {s_{i} b_{3} + b_{4} } \right) - \left( {s_{i}^{3} b_{3} + s_{i} b_{4} } \right)\left( {s_{i}^{3} a_{0} + s_{i} a_{1} } \right)} \right]} , \\ \varphi_{23} & { = }\sum\limits_{i = 1}^{8} {A_{i} \left( \xi \right)\left[ {\left( {s_{i}^{4} a_{0} + s_{i}^{2} a_{1} + a_{2} } \right)s_{i} b_{3} - \left( {s_{i}^{3} b_{3} + s_{i} b_{4} } \right)\left( {s_{i}^{2} a_{0} + a_{1} } \right)} \right]} , \\ \varphi_{24} & { = }\sum\limits_{i = 1}^{8} {A_{i} \left( \xi \right)\left[ {\left( {s_{i}^{4} a_{0} + s_{i}^{2} a_{1} + a_{2} } \right)b_{3} - \left( {s_{i}^{3} b_{3} + s_{i} b_{4} } \right)s_{i} a_{0} } \right]} , \\ \varphi_{25} & { = }\sum\limits_{i = 1}^{8} {A_{i} \left( \xi \right)\left[ { - \left( {s_{i}^{3} b_{3} + s_{i} b_{4} } \right)a_{0} } \right]} , \\ \varphi_{26} & { = }\sum\limits_{i = 1}^{8} {A_{i} \left( \xi \right)\left[ {\left( {s_{i}^{4} a_{0} + s_{i}^{2} a_{1} + a_{2} } \right)\left( {s_{i}^{3} b_{0} + s_{i} b_{1} } \right) - \left( {s_{i}^{3} b_{3} + s_{i} b_{4} } \right)\left( {s_{i}^{2} a_{3} + a_{4} } \right)} \right]} , \\ \varphi_{27} & { = }\sum\limits_{i = 1}^{8} {A_{i} \left( \xi \right)\left[ {\left( {s_{i}^{4} a_{0} + s_{i}^{2} a_{1} + a_{2} } \right)\left( {s_{i}^{2} b_{0} + b_{1} } \right) - \left( {s_{i}^{3} b_{3} + s_{i} b_{4} } \right)s_{i} a_{3} } \right]} , \\ \varphi_{28} & { = }\sum\limits_{i = 1}^{8} {A_{i} \left( \xi \right)\left[ {\left( {s_{i}^{4} a_{0} + s_{i}^{2} a_{1} + a_{2} } \right)s_{i} b_{0} - \left( {s_{i}^{3} b_{3} + s_{i} b_{4} } \right)a_{3} } \right]} , \\ \varphi_{29} & { = }\sum\limits_{i = 1}^{8} {A_{i} \left( \xi \right)\left( {s_{i}^{4} a_{0} + s_{i}^{2} a_{1} + a_{2} } \right)} . \\ \end{aligned} $$
(A24)

To determine the constants W(0), W′(0), W′′(0), W′′′(0), Φ(0), Φ′(0), Φ′′(0) and Φ′′′(0), the various order derivatives of φmn can be expressed with an unified form

$$ \varphi_{mn}^{\left( k \right)} { = }\sum\limits_{i = 1}^{8} {s_{i}^{k} A_{i} \left( \xi \right)g\left( {s_{i} } \right)} . $$
(A25)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Chen, B., Lin, B. et al. Analytical solutions of the forced vibration of Timoshenko micro/nano-beam under axial tensions supported on Winkler–Pasternak foundation. Eur. Phys. J. Plus 137, 153 (2022). https://doi.org/10.1140/epjp/s13360-022-02360-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02360-z

Navigation