Skip to main content
Log in

Numerical modeling of nanofluid exergy loss within tube with multi-helical tapes

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The hybrid nanofluid turbulent convective migration within a tube having turbulator was analyzed using the numerical approach and investigated through entropy optimization principle. The forced convective fluid motion is modeled through coupled partial differential equations satisfying suitable boundary restrictions. The set of developed coupled equations is solved through ANSY Fluent Solver. The characteristics of the chosen hybrid nanomaterial were clarified via contours of streaming velocity, and temperature by varying the strength of Reynolds number (Re) and revolution (P) of tape. It is found that the exergy loss in the tube decreases with the increasing Re and P. The fluid velocity enhances with the augmenting Re associated with the higher input power and with the increasing P. The temperature declines with the augmenting fluid turbulence and drops (rises) with the augmenting P at bigger (smaller) Re. The exergy destruction with augmenting Re drops at much faster rate as compared with the enhancing P. The accommodation of the achieved results with the published work depicts reasonable correctness of the applied simulation procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.].

References

  1. Y.-M. Chu, N.H. Abu-Hamdeh, B. Ben-Beya, M.R. Hajizadeh, Z. Li, Q.-V. Bach, Nanoparticle enhanced PCM exergy loss and thermal behavior by means of FVM. J. Mol. Liq. 320, 114457 (2020). https://doi.org/10.1016/j.molliq.2020.114457

    Article  Google Scholar 

  2. M. Sheikholeslami, S.A. Farshad, Z. Said, Analyzing entropy and thermal behavior of nanomaterial through solar collector involving new tapes. Int. Commun. Heat Mass Transf. 123, 105190 (2021). https://doi.org/10.1016/j.icheatmasstransfer.2021.105190

    Article  Google Scholar 

  3. Y. Qin, Simulation of MHD impact on nanomaterial irreversibility and convective transportation through a chamber. Appl. Nanosci. (2021). https://doi.org/10.1007/s13204-021-01941-1

    Article  Google Scholar 

  4. C. She, R. Jiab, B.-N. Hu, Z.-K. Zheng, Y.-P. Xu, D. Rodriguez, Life cycle cost and life cycle energy in zero-energy building by multi-objective optimization. Energy Rep. 7, 5612–5626 (2021)

    Article  Google Scholar 

  5. Y.-M. Chu, Z. Salahshoor, M.S. Shahraki, A. Shafee, Q.-V. Bach, Annulus shape tank with convective flow in a porous zone with impose of MHD. Int. J. Modern Phys. C (2020). https://doi.org/10.1142/S0129183120501685

    Article  MathSciNet  Google Scholar 

  6. X. Yu, C. She, F. Gholizadeh, Y.-P. Xu, Numerical investigation of a new combined energy cycle based on miller cycle, organic rankine cycle, stirling engine and alkaline fuel cell. Energy Rep. 7, 5406–5419 (2021)

    Article  Google Scholar 

  7. T.-H. Zhao, Z.-Y. He, Y.-M. Chu, Sharp bounds for the weighted H-older mean of the zero-balanced generalized complete elliptic integrals. Comput. Methods Funct. Theory 21, 413–426 (2021). https://doi.org/10.1007/s40315-020-00352-7

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Y.-M. Chu, D. Yadav, A. Shafee, Z. Li, Q.-V. Bach, Influence of wavy enclosure and nanoparticles on heat release rate of PCM considering numerical study. J. Mol. Liq. 319, 114121 (2020). https://doi.org/10.1016/j.molliq.2020.114121

    Article  Google Scholar 

  9. L.-N. Guo, C. She, D.-B. Kong, S.-L. Yan, Y.-P. Xu, M. Khayatnezhad, F. Gholini, Prediction of the effects of climate change on hydroelectric generation, electricity demand, and emissions of greenhouse gases under climatic scenarios and optimized ANN model. Energy Rep. 7, 5431–5445 (2021)

    Article  Google Scholar 

  10. Y. Qin, Effect of inclusion of nanoparticles on unsteady heat transfer. Appl. Nanosci. (2021). https://doi.org/10.1007/s13204-021-01960-y

    Article  Google Scholar 

  11. P. Ouyang, Y.-P. Xu, L.-Y. Qi, S.-M. Xing, H. Fooladi, Comprehensive evaluation of flat plate and parabolic dish solar collectors’ performance using different operating fluids and MWCNT nanofluid in different climatic conditions. Energy Rep. 7, 2436–2451 (2021)

    Article  Google Scholar 

  12. T.-H. Zhao, M.-K. Wang, Y.-M. Chu, Concavity and bounds involving generalized elliptic integral of therst kind. J. Math. Inequal. 15(2), 701–724 (2021). https://doi.org/10.7153/jmi-2021-15-50

    Article  MathSciNet  MATH  Google Scholar 

  13. Y.-M. Chu, R. Moradi, A.M. Abazari, Q.-V. Bach, Effect of non-uniform magnetic field on thermal performance of nanofluid flow in angled junction. Int. J. Modern Phys. C 2, 1059 (2020). https://doi.org/10.1142/S0129183121500017

    Article  Google Scholar 

  14. T.-H. Zhao, M.-K. Wang, Y.-M. Chu, Monotonicity and convexity involving generalized elliptic integral of therst kind. Rev. R. Acad. Cienc. Exactas Nat. Ser. A Mat. RACSAM 115(2), 13 (2021). https://doi.org/10.1007/s13398-020-00992-3

    Article  Google Scholar 

  15. Y.-M. Chu, M.R. Hajizadeh, Z. Li, Q.-V. Bach, Investigation of nano powders influence on melting process within a storage unit. J. Mol. Liq. 318, 114321 (2020). https://doi.org/10.1016/j.molliq.2020.114321

    Article  Google Scholar 

  16. M. Sheikholeslami, S.A. Farshad, Z. Ebrahimpour, Z. Said, Recent progress on flat plate solar collectors and photovoltaic systems in the presence of nanofluid: a review. J. Cleaner Prod. 293, 126119 (2021). https://doi.org/10.1016/j.jclepro.2021.126119

    Article  Google Scholar 

  17. Y. Qin, Nanofluid heat transfer within a pipe equipped with external device. Int. Commun. Heat Mass Transf. 127, 105487 (2021). https://doi.org/10.1016/j.icheatmasstransfer.2021.105487

    Article  Google Scholar 

  18. H.-H. Chu, T.-H. Zhao, Y.-M. Chu, Sharp bounds for the Toader mean of order 3 in terms of arithmetic, quadratic and contraharmonic means. Math. Slovaca 70(5), 1097–1112 (2020). https://doi.org/10.1515/ms-2017-0417

    Article  MathSciNet  MATH  Google Scholar 

  19. Y. Xie, X. Meng, D. Mao, Z. Qin, L. Wan, Y. Huang, Homogeneously dispersed graphene nanoplatelets as long-term corrosion inhibitors for aluminum matrix composites. ACS Appl. Mater. Interfaces 13(27), 32161–32174 (2021). https://doi.org/10.1021/acsami.1c07148

    Article  Google Scholar 

  20. J. Feng, X. Luo, M. Gao, A. Abbas, Y.-P. Xu, S. Pouraminid, Minimization of energy consumption by building shape optimization using an improved Manta-Ray Foraging Optimization algorithm. Energy Rep. 7, 1068–1078 (2021)

    Article  Google Scholar 

  21. M. Khodadadi, M. Sheikholeslami, Heat transfer efficiency and electrical performance evaluation of photovoltaic unit under influence of NEPCM. Int. J. Heat Mass Transf. (2022). https://doi.org/10.1016/j.ijheatmasstransfer.2021.122232

    Article  Google Scholar 

  22. Y.-M. Chu, S. Bilal, M.R. Hajizadeh, Hybrid ferrofluid along with MWCNT for augmentation of thermal behavior of fluid during natural convection in a cavity. Math. Methods Appl. Sci. 7, 1–12 (2020). https://doi.org/10.1002/mma.6937

    Article  Google Scholar 

  23. T.-H. Zhao, Z.-Y. He, Y.-M. Chu, On some renements for inequalities involving zero-balanced hypergeometric function. AIMS Math. 5(6), 6479–6495 (2020). https://doi.org/10.3934/math.2020418

    Article  MathSciNet  Google Scholar 

  24. Y. Qin, Numerical modeling of energy storage unit during freezing of paraffin utilizing Al2O3 nanoparticles and Y-shape fin. J. Energy Storage 44, 103452 (2021). https://doi.org/10.1016/j.est.2021.103452

    Article  Google Scholar 

  25. M. Wang, C. Jiang, S. Zhang, X. Song, Y. Tang, H. Cheng, Reversible calcium alloying enables a practical room-temperature rechargeable calcium-ion battery with a high discharge voltage. Nat. Chem. 10(6), 667–672 (2018). https://doi.org/10.1038/s41557-018-0045-4

    Article  Google Scholar 

  26. S. Yao, Xu. Yi-Peng, E. Ramezani, Optimal long-term prediction of Taiwan’s transport energy by convolutional neural network and wildebeest herd optimizer. Energy Rep. 7, 218–227 (2021)

    Article  Google Scholar 

  27. T.-H. Zhao, M.-K. Wang, Y.-M. Chu, A sharp double inequality involving generalized complete elliptic integral of therst kind. AIMS Math. 5(5), 4512–4528 (2020). https://doi.org/10.3934/math.2020290

    Article  MathSciNet  Google Scholar 

  28. F. Li, A. Almarashi, M. Jafaryar, M.R. Hajizadeh, Y.-M. Chu, Melting process of nanoparticle enhanced PCM through storage cylinder incorporating fins. Powder Technol. 381, 551–560 (2021)

    Article  Google Scholar 

  29. Y. Feng, B. Zhang, Y. Liu, Z. Niu, B. Dai, Y. Fan, X. Chen, A 200–225-GHz manifold-coupled multiplexer utilizing metal wave guides. IEEE Trans. Microwave Theory Tech. 1, 10 (2021). https://doi.org/10.1109/TMTT.2021.3119316

    Article  Google Scholar 

  30. M. Sheikholeslami, M. Jafaryar, Nanoparticles for improving the efficiency of heat recovery unit involving entropy generation analysis. J. Taiwan Inst. Chem. Eng. 115, 96–107 (2020). https://doi.org/10.1016/j.jtice.2020.09.033

    Article  Google Scholar 

  31. Y. Zi-Xuan, M.-S. Li, X. Yi-Peng, S. Aslam, Y.-K. Li, Techno-economic planning and operation of the microgrid considering real-time pricing demand response program. Energies 14(15), 4597 (2021). https://doi.org/10.3390/en14154597

    Article  Google Scholar 

  32. T.-H. Zhao, L. Shi, Y.-M. Chu, Convexity and concavity of the modied Bessel functions of therst kind with respect to Holder means. Rev. R. Acad. Cienc. Exactas Nat. Ser. A Mat. 114(2), 14 (2020). https://doi.org/10.1007/s13398-020-00825-3

    Article  Google Scholar 

  33. X. Zhang, Y. Tang, F. Zhang, C. Lee, A novel aluminum-graphite dual-ion battery. Adv. Energy Mater. 6(11), 1502588 (2016). https://doi.org/10.1002/aenm.201502588

    Article  Google Scholar 

  34. J. Wang, Y.-P. Xu, R. Qahiti, M. Jafaryar, M.A. Alazwari, N.H. Abu-Hamdeh, A. Issakhov, M.M. Selim, Simulation of hybrid nanofluid flow within a microchannel heat sink considering porous media analyzing CPU stability. J. Pet. Sci. Eng. 208, 109734 (2020)

    Article  Google Scholar 

  35. T.-H. Zhao, B.-C. Zhou, M.-K. Wang, Y.-M. Chu, On approximating the quasi-arithmetic mean. J. Inequal. Appl. 42, 12 (2019). https://doi.org/10.1186/s13660-019-1991-0

    Article  MathSciNet  MATH  Google Scholar 

  36. T. Wang, A. Almarashi, Y.A. Al-Turki, N.H. Abu-Hamdeh, M.R. Hajizadeh, Y.-M. Chu, Approaches for expedition of discharging of PCM involving nanoparticles and radial fins. J. Mol. Liq. (2020). https://doi.org/10.1016/j.molliq.2020.115052

    Article  Google Scholar 

  37. M. Sheikholeslami, M. Jafaryar, Z. Said, A.I. Alsabery, H. Babazadeh, A. Shafee, Modification for helical turbulator to augment heat transfer behavior of nanomaterial via numerical approach. Appl. Thermal Eng. 182, 115935 (2021)

    Article  Google Scholar 

  38. X. Tong, F. Zhang, B. Ji, M. Sheng, Y. Tang, Carbon-coated porous aluminum foil anode for high-rate, long-term cycling stability, and high energy density dual-ion batteries. Adv. Mater. (Weinheim) 28(45), 9979–9985 (2016). https://doi.org/10.1002/adma.201603735

    Article  Google Scholar 

  39. T.-H. Zhao, M.-K. Wang, W. Zhang, Y.-M. Chu, Quadratic transformation inequalities for Gaussian hypergeometric function. J. Inequal. Appl. 251, 15 (2018). https://doi.org/10.1186/s13660-018-1848-y

    Article  MathSciNet  MATH  Google Scholar 

  40. Y. Fu, H. Chen, R. Guo, Y. Huang, M.R. Toroghinejad, Extraordinary strength-ductility in gradient amorphous structured Zr-based alloy. J. Alloy. Compd. 888, 161507 (2021). https://doi.org/10.1016/j.jallcom.2021.161507

    Article  Google Scholar 

  41. S.U.S. Choi, Enhancing thermal conductivity of fluids with nanoparticles. Proc. ASME Int. Mech. Eng. Congr. Expo. 66, 99–105 (1995)

    Google Scholar 

  42. F. Rashidi, N.M. Nezamabad, Experimental investigation of convective heat transfer coefficient of cnts nanofluid under constant heat flux, in Proceedings of the World Congress on Engineering, Vol. 3. 1em plus 0.5em Minus 0.4em WCE London, UK, 2011, pp. 6–8

  43. B.C. Pak, Y.I. Cho, Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp. Heat Transf. Int. J. 11(2), 151–170 (1998)

    Article  ADS  Google Scholar 

  44. B. Sun, W. Lei, D. Yang, Flow and convective heat transfer characteristics of fe2o3–water nanofluids inside copper tubes. Int. Commun. Heat Mass Transf. 64, 21–28 (2015)

    Article  Google Scholar 

  45. N.K. Mahanta, A.R. Abramson, Thermal conductivity of graphene and graphene oxide nanoplatelets, in 13th InterSociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems. 1em plus 0.5em Minus 0.4em IEEE, 2012, pp. 1–6

  46. A. Mehmood, M.S. Iqbal, Heat transfer analysis in natural convection flow of nanofluid past a wavy cone. J. Mol. Liq. 223, 1178–1184 (2016)

    Article  Google Scholar 

  47. M. Sheikholeslami, B. Rezaeianjouybari, M. Darzi, A. Shafee, Z. Li, T.K. Nguyen, Application of nano-refrigerant for boiling heat transfer enhancement employing an experimental study. Int. J. Heat Mass Transf. 141, 974–980 (2019)

    Article  Google Scholar 

  48. Y.-M. Chu, T.-H. Zhao, Concavity of the error function with respect to Holder means. Math. Inequal. Appl. 19(2), 589–595 (2016)

    MathSciNet  MATH  Google Scholar 

  49. Y.-M. Chu, E. Abohamzeh, Q.-V. Bach, Thermal two-phase analysis of nanomaterial in a pipe with turbulent flow. Appl. Nanosci. (2020). https://doi.org/10.1007/s13204-020-01576-8

    Article  Google Scholar 

  50. Y.-P. Xu, J.-W. Tan, D.-J. Zhu, P. Ouyang, B. Taheri, Model identification of the proton exchange membrane fuel cells by extreme learning machine and a developed version of arithmetic optimization algorithm. Energy Rep. 7, 2332–2342 (2020)

    Article  Google Scholar 

  51. S.-S. Zhou, S. Rashid, M.A. Noor, K.I. Noor, F. Safdar, Y.M. Chu, New Hermite-Hadamard type inequalities for exponentially convex functions and applications. AIMS Math. 5(6), 6874–6901 (2020). https://doi.org/10.3934/math.2020441

    Article  MathSciNet  Google Scholar 

  52. Y.-M. Chu, R. Moradi, Computational investigation of non-uniform magnetic field on thermal characteristic of nanofluid stream inside 180 degree elbow pipe. Mod. Phys. Lett. B (2020). https://doi.org/10.1142/S0217984921501578

    Article  Google Scholar 

  53. S.-S. Zhou, S. Rashid, F. Jarad, H. Kalsoom, Y.-M. Chu, New estimates considering the generalized proportional Hadamard fractional integral operators. Adv. Differ. Equ. 275, 15 (2020). https://doi.org/10.1186/s13662-020-02730-w

    Article  MathSciNet  Google Scholar 

  54. Y.-M. Chu, F. Salehi, M. Jafaryar, Q.-V. Bach, Simulation based on FVM for influence of nanoparticles on flow inside a pipe enhanced with helical tapes. Appl. Nanosci. (2020). https://doi.org/10.1007/s13204-020-01583-9

    Article  Google Scholar 

  55. S.-B. Chen, S. Rashid, Z. Hammouch, M.A. Noor, R. Ashraf, Y.-M. Chu, Integral inequalities via Raina’s fractional integrals operator with respect to a monotone function. Adv. Differ. Equ. 647, 20 (2020). https://doi.org/10.1186/s13662-020-03108-82

    Article  MathSciNet  Google Scholar 

  56. S.-B. Chen, S. Rashid, M.A. Noor, Z. Hammouch, Y.-M. Chu, New fractional approaches for n-polynomial P-convexity with applications in special function theory. Adv. Differ. Equ. 543, 31 (2020). https://doi.org/10.1186/s13662-020-03000-5

    Article  MathSciNet  Google Scholar 

  57. Y.-M. Chu, Z. Li, Q.-V. Bach, Application of nanomaterial for thermal unit including tube fitted with turbulator. Appl. Nanosci. 2, 17 (2020). https://doi.org/10.1007/s13204-020-01587-5

    Article  Google Scholar 

  58. S.-B. Chen, S. Rashid, M.A. Noor, R. Ashraf, Y.-M. Chu, A new approach on fractional calculus and probability density function. AIMS Math. 5(6), 7041–7054 (2020). https://doi.org/10.3934/math.2020451

    Article  MathSciNet  Google Scholar 

  59. G. Momin, Experimental investigation of mixed convection with water-Al2O3 and hybrid nanofluid in inclined tube for Laminar flow. Int. J. Sci. Tech. Res. 2, 193–202 (2014)

    Google Scholar 

  60. S. Suresh, K.P. Venkitaraj, P. Selvakumar, M. Chandrasekar, Synthesis of Al2O3–Cu/water hybrid nanofluids using two step method and its thermo physical properties. Colloids Surf. A. 388, 41–48 (2011)

    Article  Google Scholar 

  61. T. Hayat, S. Nadeem, Heat transfer enhancement with Ag–CuO/water hybrid nanofluid. Results Phys. 7, 2317–2324 (2017)

    Article  ADS  Google Scholar 

  62. S. Suresh, K.P. Venkitaraj, P. Selvakumar, M. Chandrasekar, Effect of Al2O3–Cu/water hybrid nanofluid in heat transfer. Exp. Therm. Fluid Sci. 38, 54–60 (2012)

    Article  Google Scholar 

  63. H. Babazadeh, Z. Shah, I. Ullah, P. Kumam, A. Shafee, Analyze of hybrid nanofluid behavior within a porous cavity including Lorentz forces and radiation impacts. J. Therm. Anal. Calorim. (2020). https://doi.org/10.1007/s10973-020-09416-1

    Article  Google Scholar 

  64. L.A. Lund, Z. Omar, I. Khan, A.H. Seikh, E.S.M. Sherif, K.S. Nisar, Stability analysis and multiple solution of Cu–Al2O3/H2O nanofluid contains hybrid nanomaterials over a shrinking surface in the presence of viscous dissipation. J. Mater. Res. Technol. 9, 421–432 (2020)

    Article  Google Scholar 

  65. M. Sheikholeslami, S.A. Farshad, Numerical simulation of effect of non-uniform solar irradiation on nanofluid turbulent flow. Int. Commun. Heat Mass Transf. 129, 105648 (2021). https://doi.org/10.1016/j.icheatmasstransfer.2021.105648

    Article  Google Scholar 

  66. M. Sheikholeslami, M. Jafaryar, M. Hedayat, A. Shafee, Z. Li, T.K. Nguyen, M. Bakouri, Heat transfer and turbulent simulation of nanomaterial due to compound turbulator including irreversibility analysis. Int. J. Heat Mass Transfer 137, 1290–1300 (2019)

    Article  Google Scholar 

  67. A. García, P.G. Vicente, A. Viedma, Experimental study of heat transfer enhancement with wire coil inserts in Laminar-transition-turbulent regimes at different Prandtl numbers. Int. J. Heat Mass Transf. 48(21), 4640–4651 (2005)

    Article  Google Scholar 

  68. C. Qi, G. Wang, Y. Yan, S. Mei, T. Luo, Effect of rotating twisted tape on thermohydraulic performances of nanofluids in heat-exchanger systems. Energy Convers. Manag. 166, 744–757 (2018)

    Article  Google Scholar 

  69. A. Bejan, A study of entropy generation in fundamental convective heat transfer. J. Heat Trans. 101, 718–725 (1979)

    Article  Google Scholar 

  70. M. Sheikholeslami, S.A. Farshad, Investigation of solar collector system with turbulator considering hybrid nanoparticles. Renew. Energy 171, 1128–1158 (2021)

    Article  Google Scholar 

  71. I.V. Miroshnichenko, M.A. Sheremet, H.F. Oztop, K. Al-Salem, MHD natural convection in a partially open trapezoidal cavity filled with a nanofluid. Int. J. Mech. Sci. 119, 294–302 (2016)

    Article  Google Scholar 

  72. Z. Shah, M. Jafaryar, M. Sheikholeslami, I.P. Kumam, Heat transfer intensification of nanomaterial with involve of swirl flow device concerning entropy generation. Sci. Rep. 2, 19 (2021)

    Google Scholar 

  73. R.M. Susin, G.A. Lindner, V.C. Mariani, K.C. Mendonça, Evaluating the influence of the width of inlet slot on the prediction of indoor airflow: comparison with experimental data. Build. Environ. 44(5), 971–986 (2009). https://doi.org/10.1016/j.buildenv.2008.06.021

    Article  Google Scholar 

  74. L.S. Sundar, M.K. Singh, A.C.M. Sousa, Enhanced heat transfer and friction factor of MWCNT–Fe3O4/water hybrid nanofluids. Int. Commun. Heat Mass Transf. 52, 73 (2014)

    Article  Google Scholar 

  75. R.M. Manglik, A.E. Bergles, Heat transfer and pressure drop correlations for twisted-tape inserts in isothermal tubes: part II—transition and turbulent flows. J. Heat Transf. 115(4), 890–896 (1993)

    Article  Google Scholar 

Download references

Acknowledgements

The first author is supported by the Science Development grant of Fujian Province (No. 2021J02050).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zahir Shah.

Ethics declarations

Competing interests

All authors have declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Shah, Z., Ikramullah et al. Numerical modeling of nanofluid exergy loss within tube with multi-helical tapes. Eur. Phys. J. Plus 137, 152 (2022). https://doi.org/10.1140/epjp/s13360-021-02327-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-02327-6

Navigation