Skip to main content
Log in

Dark matter from symmetron field

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We consider dynamics of a symmetron-like field to investigate dark matter effects on galaxy scales. For this purpose, we propose a model for the metric components of a spherically symmetric space–time in regions of galactic halos where the rotation curves are flat. Then, we show that the mass corresponding to the effects of the symmetron scalar field obtained from modified Einstein field equations is responsible for the flat rotation curves in a galactic halo so that the motion of test particles in such a region can be explained without the need to introduce dark matter. In addition, the light deflection angle for this model is investigated in a galactic halo as a possible physical test for comparison purposes. The results show compatibility with previous models such as generalized pseudo-isothermal dark matter with exponential matter density, brane F(R) or F(RT) gravity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. In our case the index m stands for the baryonic matter.

  2. According to Newtonian gravity, to have a constant tangential velocity in the halo of galaxies, we should have \( M \propto r \) [38].

  3. Note that, when r decreases from infinity to its minimum value \( r_{0} \) and increases again to become infinite, the total change in \( \varphi \) becomes just twice the change from \( \infty \) to \( r_{0} \), that is \( 2\left| {\varphi \left( {{r_0}} \right) - \varphi \left( \infty \right) } \right| \). But if the trajectory was a straight line, it would only equal to \( \pi \) [38].

References

  1. J. Binny, S. Tremaine, Galactic Dynamics (Princeton University Press, Princeton, 1987)

    MATH  Google Scholar 

  2. Y. Huang, et al., The Milky way’s rotation curve out to 100 kpc and its constraint on the galactic mass distribution. arXiv:1604.01216

  3. M. Persic, P. Salucci, F. Stel, The universal rotation curve of spiral galaxies: I. The dark matter connection. Mon. Not. R. Astron. Soc. 281, 27 (1996)

    Article  ADS  Google Scholar 

  4. P. Salucci, A. Lapi, C. Tonini, G. Gentile, I. Yegorova, U. Klein, The universal rotation curve of spiral galaxies: II. The dark matter distribution out to the virial radius. Mon. Not. R. Astron. Soc. 378, 41 (2007)

    Article  ADS  Google Scholar 

  5. A. Borriello, P. Salucci, The dark matter distribution in disc galaxies. Mon. Not. R. Astron. Soc. 323, 285 (2001)

    Article  ADS  Google Scholar 

  6. T. Bernal, V.H. Robles, T. Matos, Scalar field dark matter in clusters of galaxies. Mon. Not. R. Astron. Soc. 468, 3135 (2017)

    Article  ADS  Google Scholar 

  7. T. Harko, K.S. Cheng, Galactic metric, dark radiation, dark pressure, and gravitational lensing in brane world models. Astrophys. J. 636, 8 (2006)

    Article  ADS  Google Scholar 

  8. H. Hoekstra et al., Masses of galaxy clusters from gravitational lensing. Space Sci. Rev. 177, 75 (2013)

    Article  ADS  Google Scholar 

  9. J.M. Overduin, P.S. Wesson, Dark matter and background light. Phys. Rept. 402, 267 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  10. M. Milgrom, A modification of the Newtonian dynamics as a possible alternative to the hidden mass hypothesis. Astrophys. J. 270, 365 (1983)

    Article  ADS  Google Scholar 

  11. P.D. Mannheim, Linear potentials and galactic rotation curves. Astrophys. J. 419, 150 (1993)

    Article  ADS  Google Scholar 

  12. M.K. Mak, T. Harko, Can the galactic rotation curves be explained in brane world models? Phys. Rev. D 70, 024010 (2004)

    Article  ADS  Google Scholar 

  13. C.G. Böhmer, T. Harko, Galactic dark matter as a bulk effect on the brane. Class. Quant. Grav. 24, 3191 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  14. S. Capozziello, S. Nojiri, S.D. Odintsov, A. Troisi, Cosmological viability of \( f (R) \) gravity as an ideal fluid and its compatibility with a matter dominated phase. Phys. Lett. B 639, 135 (2006)

    Article  ADS  Google Scholar 

  15. S. Nojiri, S.D. Odintsov, Modified \( f (R) \) gravity consistent with realistic cosmology: from a matter dominated epoch to a dark energy universe. Phys. Rev. D 74, 086005 (2006)

    Article  ADS  Google Scholar 

  16. S. Capozziello, V.F. Cardone, A. Troisi, Dark energy and dark matter as curvature effects. J. Cosmol. Astropart. Phys. 0608, 001 (2006)

    Article  ADS  Google Scholar 

  17. S. Capozziello, V.F. Cardone, A. Troisi, Low surface brightness galaxy rotation curves in the low energy limit of \( R^{n} \) gravity: no need for dark matter? Mon. Not. R. Astron. Soc. 375, 1423 (2007)

    Article  ADS  Google Scholar 

  18. A. Borowiec, W. Godlowski, M. Szydlowski, Dark matter and dark energy as effects of modified gravity. Int. J. Geom. Methods Mod. Phys. 4, 183 (2007)

    Article  MathSciNet  Google Scholar 

  19. C.G. Böhmer, T. Harko, F.S.N. Lobo, Generalized virial theorem in \(f(R)\) gravity. J. Cosmol. Astropart. Phys. 0803, 024 (2008)

    Article  ADS  Google Scholar 

  20. K.-Y. Su, P. Chen, Solving the Cusp-Core problem with a novel scalar field dark matter. JCAP 08, 016 (2011)

    Article  ADS  Google Scholar 

  21. A.S. Sefiedgar, Z. Haghani, H.R. Sepangi, Brane-\( f(R) \) gravity and dark matter. Phys. Rev. D 85, 064012 (2012)

    Article  ADS  Google Scholar 

  22. R. Zaregonbadi, M. Farhoudi, N. Riazi, Dark matter from \( f(R, T) \) gravity. Phys. Rev. D 94, 084052 (2016)

    Article  ADS  Google Scholar 

  23. J. Magana, T. Matos, A brief review of the scalar field dark matter mode. J. Phys. Confer. Ser. 378, 012012 (2012)

    Article  Google Scholar 

  24. T. Matos, A. Vazquez-Gonzalez, J. Magana, \(\phi ^{2}\) as dark matter. MNRAS 389, 13957 (2009)

    Google Scholar 

  25. M.S. Turner, Coherent scalar-field oscillations in an expanding universe. Phys. Rev. D 28, 1243 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  26. F. Briscese, Viability of complex self-interacting scalar field as dark matter. Phys. Lett. B 315, 696 (2011)

    Google Scholar 

  27. K. Hinterbichler, J. Khoury, A. Levy, A. Matas, Symmetron cosmology. Phys. Rev. D 84, 103521 (2011)

    Article  ADS  Google Scholar 

  28. H. Mohseni Sadjadi, M. Honardoost, H.R. Sepangi, Symmetry breaking and the onset of cosmic acceleration in scalar field models. Phys. Dark Univ. 14, 40 (2016)

    Article  Google Scholar 

  29. M. Honardoost, D.F. Mota, H.R. Sepangi, Symmetron with a non-minimal kinetic term. J. Cosmol. Astropart. Phys 11, 018 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  30. F. Dyson, A. Eddington, C. Davidson, A determination of the deflection of light by the sun’s gravitational field, from observations made at the total eclipse of May 29, 1919. Philos. Trans. R. Soc. 220, 291 (1919)

  31. F. Zwicky, On the masses of nebulae and of clusters of nebulae. Astrophys. J. 86, 217 (1937)

    Article  ADS  Google Scholar 

  32. P. Chen, T. Suyama, J. Yokoyama, Spontaneous scalarization: asymmetron as dark matter. Phys. Rev. D 92, 124016 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  33. Y. Sobouti, An \( f(R) \) gravitation for galactic environments. Astron. Astrophys. 464, 921 (2007)

    Article  ADS  Google Scholar 

  34. C. Burrage, J. Sakstein, Tests of Chameleon gravity. Living Rev. Relat. 21, 1 (2018)

    Article  ADS  Google Scholar 

  35. C. Burrage, E.J. Copeland, C. Käding, P. Millington, Symmetron scalar fields: modified gravity, dark matter or both? Phys. Rev. D 99, 043539 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  36. V. Faraoni, Cosmology in Scalar Tensor Gravity (Kluwer Academis, Dordreht, 2004)

    Book  Google Scholar 

  37. C.G. Böhmer, T. Harko, F.S.N. Lobo, Dark matter as a geometric effect in \( f(R) \) gravity. Astropart. Phys. 29, 386 (2008)

    Article  ADS  Google Scholar 

  38. S. Weinberg, Gravitation and Cosmology. Principles and Applications of the General Theory of Relativity (Wiley, New York, 1972)

    Google Scholar 

  39. J. Gunn, J.R. Gott, On the infall of matter into clusters of galaxies and some effects on their evolution. Astrophys. J. 176, 1 (1972)

    Article  ADS  Google Scholar 

  40. K.C. Wong, T. Harko, K.S. Cheng, L.A. Gergely, Weyl fluid dark matter model tested on the galactic scale by weak gravitational lensing. Phys. Rev. D 86, 044038 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raziyeh Zaregonbadi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaregonbadi, R., Honardoost, M. Dark matter from symmetron field. Eur. Phys. J. Plus 136, 1188 (2021). https://doi.org/10.1140/epjp/s13360-021-02199-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-02199-w

Navigation