Skip to main content
Log in

A first-principles study of \({\mathrm{Ru}}_{2}\mathrm{VGe}\) full-Heusler alloy—pseudopotential approach

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this paper we have studied the structural, magnetic, elastic and electronic properties of ruthenium-based full-Heusler alloy \({\mathrm{Ru}}_{2}\mathrm{VGe}\) using the first-principles calculations based on density functional theory. Pseudopotential plane wave approximation method within the generalized gradient approximation was used for the present calculations. Equilibrium structure of the given compound was found by fitting of energy versus lattice volume to the Murnaghan’s equation of state. The equilibrium lattice constant of the compound is in good agreement with the previous theoretical and experimental results. To study the electronic properties of the alloy, density of states (DOS) and band structure calculations were performed. The properties show the compound to be half-metallic in nature, making it suitable candidate for the spintronics-based applications. The calculated magnetic moment per formula unit is also consistent with the magnetic moment for half-metals as predicted by Slater-Pauling rule. In the past, the same alloy has been studied using the full-potential linearized augmented plane wave method (FP-LAPW). We have successfully studied the alloy using pseudopotential plane wave method which involves less computational time as compared to the FP-LAPW method and have obtained results which are in good agreement with the previously reported theoretical and experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. C. Felser, G.H. Fecher, B. Balke, Angew. Chem. Int. Ed. 46, 668 (2007)

    Article  Google Scholar 

  2. O. Heusler, Kristallstruktur und Ferromagnetismus der Mangan-Aluminium Kupferlegeirungen. Ann. Phys. 19, 155 (1934)

    Article  Google Scholar 

  3. F. Heusler, Verh. Dtsch. Phys. Ges. 5, 219 (1903)

    Google Scholar 

  4. S. Ishida, S. Fujii, S. Kashiwagi, S. Asano, J. Phys. Soc. Jpn. 64, 2152 (1995)

    Article  ADS  Google Scholar 

  5. M. Hakimi, M. Venkatesan, K. Rode, K. Ackland, J.M.D. Coey, J. Appl. Phys. 113, 17B101 (2013)

    Article  Google Scholar 

  6. B. Balke, G.H. Fecher, C. Felser, New heusler compounds and their properties, in Spintronics. ed. by C. Felser, G. Fecher (Springer, Dordrecht, 2013), pp. 15–43

    Chapter  Google Scholar 

  7. R.A. de Groot, F.M. Mueller, P.G. van Engen, K.H.J. Bushow, Phys. Rev. Lett. 50, 2024 (1983)

    Article  ADS  Google Scholar 

  8. T. Marukame, T. Ishikawa, S. Hakamata, K. Matsuda, T. Uemura, M. Yamamoto, Appl. Phys. Lett. 90, 012508 (2007)

    Article  ADS  Google Scholar 

  9. D.C. Gupta, I.H. Bhat, J. Magn. Magn. Mater. 374, 209–213 (2015)

    Article  ADS  Google Scholar 

  10. A. Bentouaf, J. Supercond. Nov. Magn. 34, 157–167 (2021)

    Article  Google Scholar 

  11. B.G. Yalcin, J. Magn. Magn. Mater. 408, 137–146 (2016)

    Article  ADS  Google Scholar 

  12. H. Hellmann, J. Chem. Phys. 3, 61 (1935)

    Article  ADS  Google Scholar 

  13. G.B. Bachelet, D.R. Hamann, M. Schliiter, Phys. Rev. B 26, 4199–4227 (1982)

    Article  ADS  Google Scholar 

  14. Y. Kang, Y.S. Kim, Y.C. Chung, H. Kim, D.S. Kim, J.J. Kim, J. Ceramic Proc. Res. 3(3 PART 2), 171–173 (2002)

    Google Scholar 

  15. G. Frenking, I. Antes, M. Bohme, S. Dapprich, A.W. Ehlers, V. Jonas, A. Neuhaus, M. Otto, R. Stegmann, A. Veldkamp, S.F. Vyboishikov, Rev. Comp. Chem. 8, 63 (1996)

    Google Scholar 

  16. P. Giannozzi, S. Baroni, N. Bonini et al., J. Phys. 21, 395502 (2009)

    Google Scholar 

  17. J.P. Perdew, K. Burke, Ernserhof: Phys. Rev. Lett. 77, 3864 (1996)

    ADS  Google Scholar 

  18. A.M. Rappe, K.M. Rabe, E. Kaxiras, J.D. Joannopoulos, Phys. Rev. B 41, 1227 (1990)

    Article  ADS  Google Scholar 

  19. H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  20. A. Pathak, Eur. Phys. J. Plus 132, 190 (2017)

    Article  Google Scholar 

  21. A. Pathak, J. Alloy. Compd. 695, 35–44 (2017)

    Article  Google Scholar 

  22. J. Kapil, P. Shukla, A. Pathak: Review Article on Density Functional Theory in Recent Trends in Materials and Devices, pp. 211–220. Springer, Singapore, 2020

  23. F.D. Murnaghan, Proc. Natl. Acad. Sci. USA 30, 244 (1947)

    Article  ADS  Google Scholar 

  24. S. Mizusaki, A. Duzono, T. Ohnishi, Y. Nagata, J. Phys. Conf. Ser. 200(0520), 17 (2010)

    Google Scholar 

  25. R.J. Soulen Jr. et al., Science 282, 85 (1998)

    Article  ADS  Google Scholar 

  26. I. Galanakis, P.H. Dederichs, N. Papanikolaou, Phys. Rev. B: Condens. Matter Mater. Phys. 66(17), 174429 (2002)

    Article  ADS  Google Scholar 

  27. J.C. Slater, Phys. Rev. 49, 537 (1936)

    Article  ADS  Google Scholar 

  28. L. Pauling, Phys. Rev. 54, 899 (1938)

    Article  ADS  Google Scholar 

  29. https://dalcorso.github.io/thermo_pw/

  30. A. Dal Corso, https://github.com/dalcorso/thermo_pw.

  31. M.J. Mehl, J.E. Osburn, D.A. Papaconstantopoulos, B.M. Klein, Phys. Rev. B 41, 103112 (1990)

    Google Scholar 

  32. M. Born, K. Huang, Dynamical Theory of Crystal Lattices (Clarendon press, Oxford, 1954)

    MATH  Google Scholar 

  33. J.K.D. Verma, B.D. Nag, J. Phys. Soc. Jpn. 20, 635–636 (1965)

    Article  ADS  Google Scholar 

  34. Z. Biskri, H. Rached, M. Bouchear, D. Rached, J. Mech. Behav. Biomed. Mater. 32, 345 (2014)

    Article  Google Scholar 

  35. S.F. Pugh, Philos. Mag. J. Sci. 45, 823 (1954)

    Article  Google Scholar 

  36. A.T. Petit, P.L. Dulong, Ann. Chim. Phys. 10, 395 (1819)

    Google Scholar 

  37. P. Debye, Ann. Phys. 39, 789 (1912)

    Article  Google Scholar 

  38. A. Bouhemadou, Braz. J. Phys. 40(1), 52–57 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge Amity Institute of Applied Sciences, Amity University, Noida, Deshbandhu College, University of Delhi, and Defence Metallurgical Research Laboratory (DMRL), Telangana, for their help and support.

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed in the conception and design of the manuscript and analysis and interpretation of data.

Corresponding author

Correspondence to Pramila Shukla.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Availability of data and material

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code availability

Open-source code of Quantum Espresso software (https://www.quantum-espresso.org/) is used for the present calculations.

Financial interests

Authors have no relevant financial and non-financial interests to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kapil, J., Shukla, P. & Pathak, A. A first-principles study of \({\mathrm{Ru}}_{2}\mathrm{VGe}\) full-Heusler alloy—pseudopotential approach. Eur. Phys. J. Plus 136, 991 (2021). https://doi.org/10.1140/epjp/s13360-021-01994-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01994-9

Navigation