Skip to main content
Log in

First-Principles Calculations of the Structural, Magnetic, and Electronic Properties of \(\hbox {Fe}_{2}\hbox {MgB}\) Full-Heusler Alloy

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The structural, magnetic, and electronic properties of a new \(\hbox {Fe}_{2}\hbox {MgB}\) full-Heusler alloy were calculated using a first-principles approach based on density functional theory. The conventional \(\hbox {Cu}_{2}\hbox {MnAl}\)-type and inverse \(\hbox {Hg}_{2}\hbox {CuTi}\)-type structures in nonmagnetic and ferromagnetic states were considered for the full-Heusler alloy. The ferromagnetic \(\hbox {Hg}_{2}\hbox {CuTi}\)-type structure was found to be the most energetically favourable. \(\hbox {Fe}_{2}\hbox {MgB}\) with ferromagnetic structure has a molecular magnetic moment of 3.000 \(\mu _{B}\) at the equilibrium lattice constant of 5.562 Å. The molecular magnetic moment originates from the alloy’s two Fe atoms and obeys the Slater–Pauling rule. The majority-spin channels are metallic, whereas the minority-spin electrons exhibited a semiconducting behaviour with an indirect narrow gap of 0.179 eV in the equilibrium state. The ferromagnetic \(\hbox {Hg}_{2}\hbox {CuTi}\)-type \(\hbox {Fe}_{2}\hbox {MgB}\) is proven to be a potential half-metallic material suitable for use in spintronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Graf, C. Felser, S.S.P. Parkin, Prog. Solid State Chem. 39, 1 (2011)

    Article  CAS  Google Scholar 

  2. M.K. Hussain, O.T. Hassan, A.M. Algubili, J. Electron. Mater. 47, 6221 (2018)

    Article  CAS  Google Scholar 

  3. P.D. Patel, S. Shinde, S.D. Gupta, P.K. Jha, J. Electron. Mater. 48, 1634 (2019)

    Article  CAS  Google Scholar 

  4. S. Kervan, N. Kervan, J. Electron. Mater. 41, 1978 (2012)

    Article  CAS  Google Scholar 

  5. T. Huang, X. Cheng, X. Guan, X. Miao, J. Electron. Mater. 45, 1028 (2016)

    Article  CAS  Google Scholar 

  6. R. Haleoot, B. Hamad, J. Electron. Mater. 48, 1164 (2019)

    Article  CAS  Google Scholar 

  7. R.A. de Groot, F.M. Mueller, P.G. van Engen, K.H.J. Buschow, Phys. Rev. Lett. 50, 2024 (1983)

    Article  Google Scholar 

  8. H.C. Kandpal, G.H. Fecher, C Felser, J. Phys. D Appl. Phys. 40, 1507 (2007)

    Article  CAS  Google Scholar 

  9. H. Luo, Z. Zhu, L. Ma, S. Xu, H. Liu, J. Qu, Y. Li, G. Wu, J. Phys. D: Appl. Phys. 40, 7121 (2007)

    Article  CAS  Google Scholar 

  10. Y. Du, G.Z. Xu, X.M. Zhang, Z.Y. Liu, S.Y. Yu, E.K. Liu, W.H. Wang, G.H. Wu, EPL 103, 37011 (2013)

    Article  Google Scholar 

  11. S. Sharma, S.K. Pandey, J. Phys. D Appl. Phys. 47, 445303 (2014)

    Article  Google Scholar 

  12. H. Liu, G. Liu, F.B. Meng, J. Li, E. Liu, G. Wu, J. Magn. Magn. Mater. 324, 3295 (2012)

    Article  Google Scholar 

  13. X.H. Liu, J.B. Lin, Y.H. Liu, Y.J. Jin, Acta Phys. Sin. 60, 107104 (2011)

    Google Scholar 

  14. F. Dahmane, Y. Mogulkoc, B. Doumi, A. Tadjer, R. Khenata, S. BinOmran, D.P. Rai, G. Murtaza, D. Varshney, J. Magn. Magn. Mater. 407, 167 (2016)

    Article  CAS  Google Scholar 

  15. V. Sharma, G. Pilania, J. Magn. Magn. Mater. 339, 142 (2013)

    Article  CAS  Google Scholar 

  16. N. Kervan, S. Kervan, Intermetallics 37, 88 (2013)

    Article  CAS  Google Scholar 

  17. N. Kervan, S. Kervan, Intermetallics 24, 56 (2012)

    Article  CAS  Google Scholar 

  18. O. Canko, F. Taşkin, M. Atiş, N. Kervan, S. Kervan, J. Supercond. Nov. Magn. 29, 1 (2016)

    Article  Google Scholar 

  19. B.S. Chen, Y.Z. Li, X.Y. Guan, C. Wang, C.X. Wang, J. Supecond. Nov. Magn. 28, 1559 (2015)

    Article  CAS  Google Scholar 

  20. N. Arıkan, A. İyigör, A. Candan, S. Uğur, Z. Charifi, H. Baaziz, G. Uğur, J. Mater. Sci. 49, 4180 (2014)

    Article  Google Scholar 

  21. K. Seema, M. Kaur, R. Kumar, J. Integr. Sci. Technol. 1, 41 (2013)

    Google Scholar 

  22. M. Khalfa, H. Khachai, F. Chiker, N. Baki, K. Bougherara, A. Yakoubi, G. Murtaza, M. Harmel, M. S. Abu-Jafar, S. BinOmran and R. Khenata, Int. J. Mod. Phys. B 29, 1550229 (2015)

    Article  CAS  Google Scholar 

  23. S. Noui, Z. Charifi, H. Baaziz, G. Uğur, Ş. Uğur, J. Electron. Mater. 48, 337 (2019)

    Article  CAS  Google Scholar 

  24. D.G. Jiang, Y.X. Ye, H.F. Liu, Q.G. Gou, D.L. Wu, Y.F. Wen, L.L. Liu, J. Magn. Magn. Mater. 458, 235 (2018)

    Article  CAS  Google Scholar 

  25. X.P. Wei, S.B. Chu, G.Y. Mao, H. Deng, T. Lei, X.R. Hu, J. Magn. Magn. Mater. 323, 2295 (2011)

    Article  CAS  Google Scholar 

  26. X.P. Wei, J.B. Deng, S.B. Chu, G.Y. Mao, T. Lei, X.R. Hu, J. Magn. Magn. Mater. 323, 185 (2011)

    Article  CAS  Google Scholar 

  27. H. Deng, X.P. Wei, T. Lei, Y. Lei, J. Supercond. Nov. Magn. 25, 2465 (2012)

    Article  CAS  Google Scholar 

  28. G. Kresse, J. Hafner, Phys. Rev. B 48, 13115 (1993)

    Article  CAS  Google Scholar 

  29. G. Kresse, J. Furthmller, Comput. Mater. Sci. 6, 15 (1996)

    Article  CAS  Google Scholar 

  30. G. Kresse, J. Furthmller, Phys. Rev. B 54, 11169 (1996)

    Article  CAS  Google Scholar 

  31. P.E. Blöchl, Phys. Rev. B 50, 17953 (1994)

    Article  Google Scholar 

  32. G. Kresse, D. Joubert, Phys. Rev. B 59, 1758 (1999)

    Article  CAS  Google Scholar 

  33. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  CAS  Google Scholar 

  34. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 78, 1396 (1997)

    Article  CAS  Google Scholar 

  35. H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976)

    Article  Google Scholar 

  36. A. Togo and I. Tanaka, Scr. Mater. 108, 1 (2015)

    Article  CAS  Google Scholar 

  37. B. Francis, Phys. Rev. 71, 809 (1947)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (51661013), and the Ph.D. Start-up Fund of Natural Science Foundation of Jinggangshan University (JZB15007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yufeng Wen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, D., Ye, Y., Yao, W. et al. First-Principles Calculations of the Structural, Magnetic, and Electronic Properties of \(\hbox {Fe}_{2}\hbox {MgB}\) Full-Heusler Alloy. J. Electron. Mater. 48, 7258–7262 (2019). https://doi.org/10.1007/s11664-019-07544-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07544-5

Keywords

Navigation