Skip to main content
Log in

Spin-polarized electromagnetic and optical response of full-Heusler Co2VZ (Z = Al, Be) alloys for spintronic application

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Magnetic materials with high spin polarization emerge as a potential candidate in spintronic applications. The present work reports the theoretical investigation of spin-polarized electronic, structural, magnetic, and optical properties of full-Heusler Co2VZ (Z = Al, Be) alloys calculated with full-potential linearized augmented plane wave method implemented in WIEN2k code. The spin orbital coupling effect is employed, and the structures are optimized at their ground state and lattice constants and bulk moduli are calculated. A metallic behavior is observed in the majority spin carriers, and an n-type semiconducting behavior is observed in the minority spin carriers for both alloys with generalized gradient approximation. A band gap of 0.55 eV and 0.41 eV is observed in the minority spin carriers with modified Becke–Johnson (mBJ) exchange potential for Co2VAl and Co2VBe, respectively. It shows 100% spin polarization at Fermi level with mBJ potential and confirms the half metallic nature of these alloys. The structure stability is confirmed with phonon dispersion curves. The calculated magnetic moments show the major contribution of cobalt (Co) atoms in the overall magnetic behavior of both alloys. In addition, the optical parameters such as real and imaginary parts of dielectric function, refractive index, extension coefficients, optical conductivity, absorption coefficients and energy loss are also calculated. The existence of complete spin polarization endorses these alloys as a promising candidate for spintronic and opto-electronic devices.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Z. Wen et al., Fully epitaxial C 1 b-type NiMnSb half-Heusler alloy films for current-perpendicular-to-plane giant magnetoresistance devices with a Ag spacer. Sci. Rep. 5(1), 1–10 (2015)

    Article  Google Scholar 

  2. T.M. Bhat, D.C. Gupta, Transport, structural and mechanical properties of quaternary FeVTiAl alloy. J. Electron. Mater. 45(11), 6012–6018 (2016)

    Article  ADS  Google Scholar 

  3. S.A. Khandy, D.C. Gupta, Electronic structure, magnetism and thermoelectricity in layered perovskites: Sr2SnMnO6 and Sr2SnFeO6. J. Magn. Magn. Mater. 441, 166–173 (2017)

    Article  ADS  Google Scholar 

  4. H. Xie et al., The intrinsic disorder related alloy scattering in ZrNiSn half-Heusler thermoelectric materials. Sci. Rep. 4(1), 1–6 (2014)

    Article  Google Scholar 

  5. P. Nordblad, Tuning exchange bias. Nat. Mater. 14(7), 655–656 (2015)

    Article  ADS  Google Scholar 

  6. I.H. Bhat et al., Investigation of electronic structure, magnetic and transport properties of half-metallic Mn2CuSi and Mn2ZnSi Heusler alloys. J. Magn. Magn. Mater. 395, 81–88 (2015)

    Article  ADS  Google Scholar 

  7. D.C. Gupta, I.H. Bhat, Investigation of high spin-polarization, magnetic, electronic and half-metallic properties in RuMn2Ge and RuMn2Sb Heusler alloys. Mater. Sci. Eng. B 193, 70–75 (2015)

    Article  Google Scholar 

  8. C. Fu et al., Realizing high figure of merit in heavy-band p-type half-Heusler thermoelectric materials. Nat. Commun. 6(1), 1–7 (2015)

    Article  ADS  Google Scholar 

  9. S. Yousuf, D.C. Gupta, Thermoelectric and mechanical properties of gapless Zr 2 MnAl compound. Indian J. Phys. 91(1), 33–41 (2017)

    Article  ADS  Google Scholar 

  10. I. Dubenko et al., Comparing magnetostructural transitions in Ni50Mn18. 75Cu6. 25Ga25 and Ni49. 80Mn34. 66In15. 54 Heusler alloys. J. Magn. Magn. Mater. 401, 1145–1149 (2016)

    Article  ADS  Google Scholar 

  11. Y. Xin et al., Magnetic properties and atomic ordering of BCC Heusler alloy Fe2MnGa ribbons. Physica B 489, 51–55 (2016)

    Article  ADS  Google Scholar 

  12. X. Wang et al., Robust half-metallic properties in inverse Heusler alloys composed of 4d transition metal elements: Zr2RhZ (Z = Al, Ga, In). J. Magn. Magn. Mater. 402, 190–195 (2016)

    Article  ADS  Google Scholar 

  13. P.-L. Yan, J.-M. Zhang, K.-W. Xu, Electronic structures, magnetic properties and half-metallicity in Heusler alloys Zr2CoZ (Z = Al, Ga, In, Sn). J. Magn. Magn. Mater. 391, 43–48 (2015)

    Article  ADS  Google Scholar 

  14. S. Galehgirian, F. Ahmadian, First principles study on half-metallic properties of Heusler compounds Ti2VZ (Z = Al, Ga, and In). Solid State Commun. 202, 52–57 (2015)

    Article  ADS  Google Scholar 

  15. Y. Gupta, M. Sinha, S. Verma, Lattice dynamics of novel Heusler alloys MnY2Z (Z = Al and Si). Physica B Conden. Matter. 590, 412222 (2020)

    Article  Google Scholar 

  16. S.A. Khandy et al., Full Heusler alloys (Co2TaSi and Co2TaGe) as potential spintronic materials with tunable band profiles. J. Solid State Chem. 270, 173–179 (2019)

    Article  ADS  Google Scholar 

  17. L. Bainsla, K. Suresh, Equiatomic quaternary Heusler alloys: a material perspective for spintronic applications. Appl. Phys. Rev. 3(3), 031101 (2016)

    Article  ADS  Google Scholar 

  18. T. Graf, C. Felser, S.S. Parkin, Simple rules for the understanding of Heusler compounds. Prog. Solid State Chem. 39(1), 1–50 (2011)

    Article  Google Scholar 

  19. X. Dai et al., New quarternary half metallic material CoFeMnSi. J. Appl. Phys. 105(7), 07E901 (2009)

    Article  Google Scholar 

  20. V. Alijani et al., Electronic, structural, and magnetic properties of the half-metallic ferromagnetic quaternary Heusler compounds CoFeMn Z (Z = Al, Ga, Si, Ge). Phys. Rev. B 84(22), 224416 (2011)

    Article  ADS  Google Scholar 

  21. M. Pugaczowa-Michalska, Electronic and magnetic properties and their response to pressure in Ni2MnB. J. Magn. Magn. Mater. 320(16), 2083–2088 (2008)

    Article  ADS  Google Scholar 

  22. A. Ahmed et al., Ab initio study of Co2ZrGe and Co2NbB Full Heusler compounds. Int. J. Phys. Math. Sci. 9(4), 349–357 (2015)

    ADS  Google Scholar 

  23. S. Kervan, N. Kervan, Spintronic properties of the Ti2CoB Heusler compound by density functional theory. Solid State Commun. 151(17), 1162–1164 (2011)

    Article  ADS  Google Scholar 

  24. F. Aliev et al., Narrow band in the intermetallic compounds MNiSn (M = Ti, Zr, Hf). Zeitschrift für Physik B Conden. Matter 80(3), 353–357 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  25. F.J. DiSalvo, Thermoelectric cooling and power generation. Science 285(5428), 703–706 (1999)

    Article  Google Scholar 

  26. K. Inomata et al., Large tunneling magnetoresistance at room temperature using a Heusler alloy with the B2 structure. Jpn. J. Appl. Phys. 42(4B), L419 (2003)

    Article  ADS  Google Scholar 

  27. D. Rai et al., Electronic and magnetic properties of X2YZ and XYZ Heusler compounds: a comparative study of density functional theory with different exchange-correlation potentials. Mater. Res. Express 3(7), 075022 (2016)

    Article  ADS  Google Scholar 

  28. P. Brown et al., The magnetization distributions in some Heusler alloys proposed as half-metallic ferromagnets. J. Phys. Condens. Matter 12(8), 1827 (2000)

    Article  ADS  Google Scholar 

  29. T.M. Bhat, D.C. Gupta, Robust thermoelectric performance and high spin polarisation in CoMnTiAl and FeMnTiAl compounds. RSC Adv. 6(83), 80302–80309 (2016)

    Article  ADS  Google Scholar 

  30. T.M. Bhat, D.C. Gupta, Effect of on-site Coulomb interaction on electronic and transport properties of 100% spin polarized CoMnVAs. J. Magn. Magn. Mater. 435, 173–178 (2017)

    Article  ADS  Google Scholar 

  31. S. Ishida et al., Band theory of Co2MnSn, Co2TiSn and Co2TiAl. J. Phys. F Met. Phys. 12(6), 1111 (1982)

    Article  ADS  Google Scholar 

  32. S. Yousuf, D. Gupta, Insight into electronic, mechanical and transport properties of quaternary CoVTiAl: spin-polarized DFT+ U approach. Mater. Sci. Eng. B 221, 73–79 (2017)

    Article  Google Scholar 

  33. B. Balke et al., Rational design of new materials for spintronics: Co2FeZ (Z = Al, Ga, Si, Ge). Sci. Technol. Adv. Mater. 9(1), 014102 (2008)

    Article  Google Scholar 

  34. A.R. Chandra et al., Electronic structure properties of new equiatomic CoCuMnZ (Z= In, Sn, Sb) quaternary Heusler alloys: an ab-initio study. J. Alloys Compd. 748, 298–304 (2018)

    Article  Google Scholar 

  35. G. Forozani et al., Structural, electronic and magnetic properties of CoZrIrSi quaternary Heusler alloy: First-principles study. J. Alloys Compd. 815, 152449 (2020)

    Article  Google Scholar 

  36. L. Zhang et al., First-principles investigation of equiatomic quaternary heusler alloys NbVMnAl and NbFeCrAl and a discussion of the generalized electron-filling rule. J. Supercond. Novel Magn. 31(1), 189–196 (2018)

    Article  Google Scholar 

  37. R. Jain et al., Study of the electronic structure, magnetic and elastic properties and half-metallic stability on variation of lattice constants for CoFeCr Z (Z= P, As, Sb) Heusler alloys. J. Supercond. Novel Magn. 31(8), 2399–2409 (2018)

    Article  Google Scholar 

  38. S.A. Khandy, J.-D. Chai, Thermoelectric properties, phonon, and mechanical stability of new half-metallic quaternary Heusler alloys: FeRhCrZ (Z= Si and Ge). J. Appl. Phys. 127(16), 165102 (2020)

    Article  ADS  Google Scholar 

  39. S. Idrissi et al., Half-metallic behavior and magnetic proprieties of the quaternary Heusler alloys YFeCrZ (Z= Al, Sb and Sn). J. Alloys Compd. 820, 153373 (2020)

    Article  Google Scholar 

  40. M. Guezlane et al., Electronic, magnetic and thermal properties of Co2CrxFe1− xX (X= Al, Si) Heusler alloys: first-principles calculations. J. Magn. Magn. Mater. 414, 219–226 (2016)

    Article  ADS  Google Scholar 

  41. P. Hohenberg, W. Kohn, Density functional theory (DFT). Phys. Rev 136, B864 (1964)

    Article  ADS  Google Scholar 

  42. U. Von Barth, L. Hedin, A local exchange-correlation potential for the spin polarized case i. J. Phys. C Solid State Phys. 5(13), 1629 (1972)

    Article  ADS  Google Scholar 

  43. P. Blaha, et al. wien2k. An augmented plane wave+ local orbitals program for calculating crystal properties (2001)

  44. W. Kohn, L.J. Sham, Self-consistent equations including exchange and correlation effects. Phys. Rev. 140(4A), A1133 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  45. J.P. Perdew, K. Burke, Y. Wang, Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Phys. Rev. B 54(23), 16533 (1996)

    Article  ADS  Google Scholar 

  46. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865 (1996)

    Article  ADS  Google Scholar 

  47. J. Heyd et al., Energy band gaps and lattice parameters evaluated with the Heyd-Scuseria-Ernzerhof screened hybrid functional. J. Chem. Phys. 123(17), 174101 (2005)

    Article  ADS  Google Scholar 

  48. A.D. Becke, E.R. Johnson, A simple effective potential for exchange. J. Chem. Phys. 124(22), 221101 (2006)

    Article  ADS  Google Scholar 

  49. F. Tran, P. Blaha, Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. Phys. Rev. Lett. 102(22), 226401 (2009)

    Article  ADS  Google Scholar 

  50. A.D. Becke, M.R. Roussel, Exchange holes in inhomogeneous systems: a coordinate-space model. Phys. Rev. A 39(8), 3761 (1989)

    Article  ADS  Google Scholar 

  51. D. Koelling, B. Harmon, A technique for relativistic spin-polarised calculations. J. Phys. C Solid State Phys. 10(16), 3107 (1977)

    Article  ADS  Google Scholar 

  52. P. Borlido et al., Validation of pseudopotential calculations for the electronic band gap of solids. J. Chem. Theory Comput. 16(6), 3620–3627 (2020)

    Article  Google Scholar 

  53. K. Lejaeghere et al., Reproducibility in density functional theory calculations of solids. Science 351, 6280 (2016)

    Article  Google Scholar 

  54. M. Ameri et al., First-principle investigations of structural, electronic and thermodynamic properties of CdS1–x Se x ternary alloys: (0.0 x 1.0). Mater. Express 4(6), 521–532 (2014)

    Article  Google Scholar 

  55. A. Bentouaf et al., First-principles study on the structural, electronic, magnetic and thermodynamic properties of full Heusler alloys Co2 VZ (Z= Al, Ga). J. Electron. Mater. 46(1), 130–142 (2017)

    Article  ADS  Google Scholar 

  56. M. Yin, S. Chen, P. Nash, Enthalpies of formation of selected Co2YZ Heusler compounds. J. Alloys Compd. 577, 49–56 (2013)

    Article  Google Scholar 

  57. S.E. Kulkova et al., The electronic structure and magnetic properties of full-and half-Heusler alloys. Mater. Trans. 47(3), 599–606 (2006)

    Article  Google Scholar 

  58. H.C. Kandpal, G.H. Fecher, C. Felser, Calculated electronic and magnetic properties of the half-metallic, transition metal based Heusler compounds. J. Phys. D Appl. Phys. 40(6), 1507 (2007)

    Article  ADS  Google Scholar 

  59. A. Togo, I. Tanaka, First principles phonon calculations in materials science. Scr. Mater. 108, 1–5 (2015)

    Article  ADS  Google Scholar 

  60. J. Paier, M. Marsman, G. Kresse, Dielectric properties and excitons for extended systems from hybrid functionals. Phys. Rev. B 78(12), 121201 (2008)

    Article  ADS  Google Scholar 

  61. M.W. Iqbal et al., Analysis of ternary AlGaX2 (X= As, Sb) compounds for opto-electronic and renewable energy devices using density functional theory. Phys. Scr. 96, 12570 (2021)

    Article  Google Scholar 

  62. K. Michel, B. Verberck, Theory of elastic and piezoelectric effects in two-dimensional hexagonal boron nitride. Phys. Rev. B 80(22), 224301 (2009)

    Article  ADS  Google Scholar 

  63. J.-A. Yan, W. Ruan, M. Chou, Phonon dispersions and vibrational properties of monolayer, bilayer, and trilayer graphene: density-functional perturbation theory. Phys. Rev. B 77(12), 125401 (2008)

    Article  ADS  Google Scholar 

  64. J. Kanamori, K. Terakura, A general mechanism underlying ferromagnetism in transition metal compounds. J. Phys. Soc. Jpn. 70(5), 1433–1434 (2001)

    Article  ADS  Google Scholar 

  65. C. Zener, Interaction between the d shells in the transition metals. Phys. Rev. 81(3), 440 (1951)

    Article  ADS  MATH  Google Scholar 

  66. A. Reshak, Transport properties of the n-type SrTiO3/LaAlO3 interface. RSC Adv. 6(95), 92887–92895 (2016)

    Article  ADS  Google Scholar 

  67. C. Felser, G.H. Fecher, Spintronics: From Materials to Devices (Springer, Berlin, 2013)

    Book  Google Scholar 

  68. H. Khosravi et al., DFT study of elastic, half-metallic and optical properties of Co2V (Al, Ge, Ga and Si) compounds. Int. J. Mod. Phys. B 31(14), 1750109 (2017)

    Article  ADS  Google Scholar 

  69. A. Bentouaf et al., Structural, magnetic, and band structure characteristics of the half-metal–type Heusler alloys Co2 VSi 1− x Al x (x= 0, 0.25, 0.5, 0.75, and 1). J. Superconduct. Novel Magn. 33, 1–10 (2019)

    Google Scholar 

  70. S. Wurmehl et al., Geometric, electronic, and magnetic structure of Co2 FeSi: Curie temperature and magnetic moment measurements and calculations. Phys. Rev. B 72(18), 184434 (2005)

    Article  ADS  Google Scholar 

  71. D. Rai et al., Ground state calculation of the electronic structure and magnetic properties of Co2VAl: a local spin density approximation with exchange correlation potential study. Phys. Scr. 86(4), 045702 (2012)

    Article  ADS  Google Scholar 

  72. S. Thahirunnisa, I.S. Banu, Optical properties of novel ASiP 2 (A= Ca, Sr) chalcopyrites: first-principle study. Appl. Phys. A 124(12), 1–7 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masood Yousaf.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Munir, J., Jamil, M., Jbara, A.S. et al. Spin-polarized electromagnetic and optical response of full-Heusler Co2VZ (Z = Al, Be) alloys for spintronic application. Eur. Phys. J. Plus 136, 1009 (2021). https://doi.org/10.1140/epjp/s13360-021-01968-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01968-x

Navigation