Skip to main content
Log in

The structural, elastic, electromagnetic and optical response of quaternary Heusler CoFeTiZ (Z = Ge, Sb) alloys: a DFT study with mBJ and mBJ + SOC methods

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The spin–orbit coupling effect and the modified Becke-Johnson potential have been employed to calculate the ground-state response of quaternary Heusler CoFeTiZ (Z = Ge, Sb) alloys. For this purpose, we use the full-potential linearized augmented plane wave method along with the spin-polarized calculations implemented in WIEN2k simulation code. The optimization curves and the negative formation energies of both alloys confirm their stable structures. The mechanical stability is achieved through the calculation of the elastic parameters. A metallic nature is observed in the spin-up states. The spin-dn states show a semiconductor behavior with energy gap values of 0.842 and 0.949 eV for CoFeTiGe and 0.772 and 0.809 eV for CoFeTiSb with mBJ and mBJ + SOC, respectively. The contribution of Co and Fe atoms is dominant to the overall magnetic behavior of alloys. The optical response is evaluated through several optical parameters. The maximum absorption is observed in the visible region for both alloys. The calculated properties reveal the potential of studied alloys for spintronic and optoelectronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability Statement

All data generated or analyzed during this study are included in this published article.

References

  1. Y. Li et al., First-principles study on electronic structure, magnetism and half-metallicity of the NbCoCrAl and NbRhCrAl compounds. Results Phys. 7, 2248–2254 (2017)

    Article  ADS  Google Scholar 

  2. C. Felser, G.H. Fecher, B. Balke, Spintronics: a challenge for materials science and solid-state chemistry. Angew. Chem. Int. Ed. 46(5), 668–699 (2007)

    Article  Google Scholar 

  3. K. Inomata et al., Highly spin-polarized materials and devices for spintronics. Sci. Technol. Adv. Mater. 9(1), 014101 (2008)

    Article  Google Scholar 

  4. Y. Gao, X. Gao, The half-metallicity of LiMgPdSn-type quaternary Heusler alloys FeMnScZ (Z= Al, Ga, In): a first-principle study. AIP Adv. 5(5), 057157 (2015)

    Article  ADS  Google Scholar 

  5. S. Wolf et al., Spintronics: a spin-based electronics vision for the future. Science 294(5546), 1488–1495 (2001)

    Article  ADS  Google Scholar 

  6. Julliere M, Tunneling between ferromagnetic films. Phys. Lett. A 54(3), 225–226 (1975)

    Article  ADS  Google Scholar 

  7. S. Bahramian, F. Ahmadian, Half-metallicity and magnetism of quaternary Heusler compounds CoRuTiZ (Z= Si, Ge, and Sn). J. Magn. Magn. Mater. 424, 122–129 (2017)

    Article  ADS  Google Scholar 

  8. N.A. Koshi, R. John, Half-metallic ferrimagnetism in CoFeNbZ (Z= Al, Si, Ge, Sn) quaternary heusler alloys: a DFT study. J. Superconduct. Novel Magn. 32(4), 977–986 (2019)

    Article  Google Scholar 

  9. X.L. Wang, Proposal for a new class of materials: spin gapless semiconductors. Phys. Rev. Lett. 100(15), 156404 (2008)

    Article  ADS  Google Scholar 

  10. M.N. Rasool et al., Investigation of structural, electronic and magnetic properties of 1: 1: 1: 1 stoichiometric quaternary Heusler alloys YCoCrZ (Z= Si, Ge, Ga, Al): an ab-initio study. J. Magn. Magn. Mater. 395, 97–108 (2015)

    Article  ADS  Google Scholar 

  11. B. Pandey, R.B. Ray, G.C.J.B. Kaphle, First-principles study of structural, electronic and magnetic properties of Co-based quaternary Heusler compounds: CoFeCrAl, CoFeTiAs, CoFeCrGa and CoMnVAs. Bibechana 15, 50–59 (2018)

    Article  Google Scholar 

  12. M.H. Elahmar, H. Rached, D. Rached, The half metallic feature at high temperature of the novel half-Heusler alloys and their [100] oriented layered superlattices: a DFT investigations. Mater. Chem. Phys. 267, 124712 (2021)

    Article  Google Scholar 

  13. Ş Uğur et al., Elastic, mechanical, optical and magnetic properties of Ru2MnX (X= Nb, Ta, V) Heusler alloys. J. Magn. Magn. Mater. 523, 167614 (2021)

    Article  Google Scholar 

  14. J. Munir et al., Spin-polarized electromagnetic and optical response of full-Heusler Co2VZ (Z= Al, Be) alloys for spintronic application. Eur. Phys. J. Plus 136(10), 1–18 (2021)

    Article  Google Scholar 

  15. A. Taubel et al., Tailoring magnetocaloric effect in all-d-metal Ni-Co-Mn-Ti Heusler alloys: a combined experimental and theoretical study. Acta Mater. 201, 425–434 (2020)

    Article  ADS  Google Scholar 

  16. S. Mitra et al., Investigation on structural, electronic and magnetic properties of Co2FeGe Heusler alloy: experiment and theory. J. Magn. Magn. Mater. 552, 169148 (2022)

    Article  Google Scholar 

  17. D. Rani et al., Experimental and theoretical investigation on the possible half-metallic behaviour of equiatomic quaternary Heusler alloys: CoRuMnGe and CoRuVZ (Z= Al, Ga). J. Magn. Magn. Mater. 492, 165662 (2019)

    Article  Google Scholar 

  18. L. Bainsla et al., High spin polarization in CoFeMnGe equiatomic quaternary Heusler alloy. J. Appl. Phys. 116(20), 203902 (2014)

    Article  ADS  Google Scholar 

  19. L. Bainsla et al., High spin polarization and spin splitting in equiatomic quaternary CoFeCrAl Heusler alloy. J. Magn. Magn. Mater. 394, 82–86 (2015)

    Article  ADS  Google Scholar 

  20. L. Bainsla et al., Spin gapless semiconducting behavior in equiatomic quaternary CoFeMnSi Heusler alloy. Phys. Rev. B 91(10), 104408 (2015)

    Article  ADS  Google Scholar 

  21. L. Bainsla et al., Origin of spin gapless semiconductor behavior in CoFeCrGa: theory and experiment. Phys. Rev. B 92(4), 045201 (2015)

    Article  ADS  Google Scholar 

  22. S. Berri, First-principles study on half-metallic properties of the CoMnCrSb quaternary Heusler compound. J. Superconduct. Novel Magn. 29(5), 1309–1315 (2016)

    Article  Google Scholar 

  23. M. Elahmar et al., Structural, mechanical, electronic and magnetic properties of a new series of quaternary Heusler alloys CoFeMnZ (Z= Si, As, Sb): a first-principle study. J. Magn. Magn. Mater. 393, 165–174 (2015)

    Article  ADS  Google Scholar 

  24. P. Klaer et al., Element-specific magnetic moments and spin-resolved density of states in CoFeMn Z (Z= Al, Ga; Si, Ge). Phys. Rev. B 84(14), 144413 (2011)

    Article  ADS  Google Scholar 

  25. A. Bahnes et al., Half-metallic ferromagnets behavior of a new quaternary Heusler alloys CoFeCrZ (Z= P, As and Sb): Ab-initio study. J. Alloys Compd. 731, 1208–1213 (2018)

    Article  Google Scholar 

  26. K. Benkaddour et al., First-principles study of structural, elastic, thermodynamic, electronic and magnetic properties for the quaternary Heusler alloys CoRuFeZ (Z= Si, Ge, Sn). J. Alloys Compd. 687, 211–220 (2016)

    Article  Google Scholar 

  27. M. Benkabou et al., Electronic structure and magnetic properties of quaternary Heusler alloys CoRhMnZ (Z= Al, Ga, Ge and Si) via first-principle calculations. J. Alloys Compd. 647, 276–286 (2015)

    Article  Google Scholar 

  28. Y. Zhang et al., Influence of order on the magnetic and electronic properties of quaternary half-metallic Heusler CoFeTiSn alloy. J. Alloy. Compd. 842, 155977 (2020)

    Article  Google Scholar 

  29. Y. Zhang et al., Structural, electronic and magnetic properties of CoFeTiGa1−xSbx compounds. J. Magn. Magn. Mater. 422, 32–36 (2017)

    Article  ADS  Google Scholar 

  30. X.Q. Chen, R. Podloucky, P. Rogl, Ab initio prediction of half-metallic properties for the ferromagnetic Heusler alloys Co 2 M Si (M= Ti, V, Cr). J. Appl. Phys. 100(11), 113901 (2006)

    Article  ADS  Google Scholar 

  31. K. Özdog et al., Defects-driven appearance of half-metallic ferrimagnetism in Co–Mn-based Heusler alloys. Solid State Commun. 142(9), 492–497 (2007)

    Article  ADS  Google Scholar 

  32. H.C. Kandpal, G.H. Fecher, C. Felser, Calculated electronic and magnetic properties of the half-metallic, transition metal based Heusler compounds. J. Phys. D Appl. Phys. 40(6), 1507 (2007)

    Article  ADS  Google Scholar 

  33. G. Liu et al., Mn 2 co z (z= al, ga, in, si, ge, sn, sb) compounds: Structural, electronic, and magnetic properties. Phys. Rev. B 77(1), 014424 (2008)

    Article  ADS  Google Scholar 

  34. K. Özdog, I. Galanakis, First-principles electronic and magnetic properties of the half-metallic antiferromagnet Cr2MnSb. J. Magnet. Magn. Mater. 321(15), L34–L36 (2009)

    Article  ADS  Google Scholar 

  35. V. Sharma et al., Electronic, magnetic and transport properties of Co2TiZ (Z= Si, Ge and Sn): A first-principle study. J. Magn. Magn. Mater. 322(19), 2922–2928 (2010)

    Article  ADS  Google Scholar 

  36. H. Mori et al., Electronic band structure calculations on thin films of the L21 full Heusler alloys X2YSi (X, Y= Mn, Fe, and Co): Toward spintronic materials. Thin Solid Films 520(15), 4979–4983 (2012)

    Article  ADS  Google Scholar 

  37. P. Blaha, et al., WIEN2k. in An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties (Karlheinz Schwarz, Techn. Universitat Wien, Austria, 2001). ISBN 3-9501031-1-2

  38. H. Dixit et al., Electronic structure of transparent oxides with the Tran-Blaha modified Becke-Johnson potential. J. Phys.: Cond. Matter 24(20), 205503 (2012)

    ADS  Google Scholar 

  39. S. Tariq et al., Ab initio study on half-metallic, electronic and thermodynamic attributes of LaFeO3. Eur. Phys. J. Plus 133(3), 1–10 (2018)

    Article  Google Scholar 

  40. F. Tran, P. Blaha, Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. Phys. Rev. Lett. 102(22), 226401 (2009)

    Article  ADS  Google Scholar 

  41. D. Koelling, B.N. Harmon, A technique for relativistic spin-polarised calculations. J. Phys. C: Solid State Phys. 10(16), 3107 (1977)

    Article  ADS  Google Scholar 

  42. F. Birch, Finite elastic strain of cubic crystals. Phys. Rev. 71(11), 809 (1947)

    Article  ADS  MATH  Google Scholar 

  43. G. Wang et al., Broadband and ultra-thin terahertz metamaterial absorber based on multi-circular patches. Eur. Phys. J. 86(7), 1–9 (2013)

    Article  ADS  Google Scholar 

  44. M. Shakil et al., Theoretical investigation of structural, magnetic and elastic properties of half Heusler LiCrZ (Z= P, As, Bi, Sb) alloys. Phys. B Condens. Matter 575, 411677 (2019)

    Article  Google Scholar 

  45. H. Fu et al., Ab initio calculations of elastic constants and thermodynamic properties of NiAl under high pressures. Comput. Mater. Sci. 44(2), 774–778 (2008)

    Article  Google Scholar 

  46. K. Yao et al., Half-metallic ferromagnetism of zinc-blende CrS and CrP: a first-principles pseudopotential study. Solid State Commun. 133(5), 301–304 (2005)

    Article  ADS  Google Scholar 

  47. G. Gao et al., Half-metallic ferromagnetism in zinc-blende CaC, SrC, and BaC from first principles. Phys. Rev. B 75(17), 174442 (2007)

    Article  ADS  Google Scholar 

  48. B. Fadila et al., Structural, magnetic, electronic and mechanical properties of full-Heusler alloys Co2YAl (Y= Fe, Ti): first principles calculations with different exchange-correlation potentials. J. Magn. Magn. Mater. 448, 208–220 (2018)

    Article  ADS  Google Scholar 

  49. D. Bensaid et al., First-principle investigation of structural, electronic and magnetic properties in Mn 2 RhZ (Z= Si, Ge, and Sn) Heusler alloys. J. Superconduct. Novel Magn. 29(7), 1843–1850 (2016)

    Article  Google Scholar 

  50. R. Haleoot, B. Hamad, Thermodynamic and thermoelectric properties of CoFeYGe (Y= Ti, Cr) quaternary Heusler alloys: first principle calculations. J. Phys.: Condens. Matter 32(7), 075402 (2019)

    ADS  Google Scholar 

  51. Y. Zhang et al., Magnetism, band gap and stability of half-metallic property for the quaternary Heusler alloys CoFeTiZ (Z= Si, Ge, Sn). J. Alloy. Compd. 616, 449–453 (2014)

    Article  Google Scholar 

  52. Z. Charifi, et al., Characterization of quaternary Heusler alloys CoFeYGe (Y = Ti, Cr) with respect to structural, electronic, magnetic, mechanical, and thermoelectric features. Int. J. Energy Res. 46(10), 13855–13873 (2022). https://doi.org/10.1002/er.8104

    Article  Google Scholar 

  53. L. Xiong, L. Yi, G. Gao, Search for half-metallic magnets with large half-metallic gaps in the quaternary Heusler alloys CoFeTiZ and CoFeVZ (Z= Al, Ga, Si, Ge, As, Sb). J. Magn. Magn. Mater. 360, 98–103 (2014)

    Article  ADS  Google Scholar 

  54. S. Berri et al., A first-principle study of half-metallic ferrimagnetism in the CoFeTiSb quaternary Heusler compound. J. Magn. Magn. Mater. 354, 65–69 (2014)

    Article  ADS  Google Scholar 

  55. Z. Liu et al., Role of dd and pd hybridization in CoTi-based magnetic semiconductors with 21 and 26 valence electrons. J. Phys. D Appl. Phys. 48(32), 325001 (2015)

    Article  Google Scholar 

  56. I. Galanakis, P. Dederichs, N. Papanikolaou, Slater-Pauling behavior and origin of the half-metallicity of the full-Heusler alloys. Phys. Rev. B 66(17), 174429 (2002)

    Article  ADS  Google Scholar 

  57. R. Haleoot, B. Hamad, Thermodynamic and thermoelectric properties of CoFeYGe (Y= Ti, Cr) quaternary Heusler alloys: first principle calculations. J. Phys.: Condens. Matter 32(7), 075402 (2019)

    ADS  Google Scholar 

  58. Z. Liu et al., Role of dd and pd hybridization in CoTi-based magnetic semiconductors with 21 and 26 valence electrons. J. Phys. D: Appl. Phys. 48(32), 325001 (2015)

    Article  Google Scholar 

  59. H. Zhu et al., Electronic structures and optical properties of rutile TiO2 with different point defects from DFT+ U calculations. Phys. Lett. A 378(36), 2719–2724 (2014)

    Article  ADS  Google Scholar 

  60. A. Bakar et al., Optoelectronic Properties of CuCoMnZ (Z= Si, Sn, Sb): A DFT Study. J. Electron. Mater. 50(7), 4006–4015 (2021)

    Article  ADS  Google Scholar 

  61. C. Ambrosch-Draxl, J.O. Sofo, Linear optical properties of solids within the full-potential linearized augmented planewave method. Comput. Phys. Commun. 175(1), 1–14 (2006)

    Article  ADS  Google Scholar 

  62. J.S. Toll, Causality and the dispersion relation: logical foundations. Phys. Rev. 104(6), 1760 (1956)

    Article  ADS  MathSciNet  Google Scholar 

  63. S. Thahirunnisa, I.B. Banu, Optical properties of novel ASiP 2 (A= Ca, Sr) chalcopyrites: first-principle study. Appl. Phys. A 124(12), 1–7 (2018)

    Article  Google Scholar 

  64. M. Hadi et al., Mechanical behaviors, lattice thermal conductivity and vibrational properties of a new MAX phase Lu2SnC. J. Phys. Chem. Solids 129, 162–171 (2019)

    Article  ADS  Google Scholar 

  65. G. Murtaza, I. Ahmad, First principle study of the structural and optoelectronic properties of cubic perovskites CsPbM3 (M= Cl, Br, I). Phys. B: Condens. Matter 406(17), 3222–3229 (2011)

    Article  ADS  Google Scholar 

  66. M. Hilal et al., Investigation of electro-optical properties of InSb under the influence of spin-orbit interaction at room temperature. Mater. Chem. Phys. 184, 41–48 (2016)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junaid Munir.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jamil, M., Ain, Q., Din, M.U. et al. The structural, elastic, electromagnetic and optical response of quaternary Heusler CoFeTiZ (Z = Ge, Sb) alloys: a DFT study with mBJ and mBJ + SOC methods. Eur. Phys. J. Plus 137, 1243 (2022). https://doi.org/10.1140/epjp/s13360-022-03454-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-03454-4

Navigation