Skip to main content
Log in

Positively defined color-singlet fragmentation function \(g \rightarrow {\chi _{cJ}}\)

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We revisit the fragmentation process \(g \rightarrow {\chi _{cJ}}+g\). Contrary to what was presented previously in the literature, our fragmentation functions are strictly positive, smooth, and vanish at \(z \rightarrow 1\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. The presence of two Feynman diagrams where the gluon can be emitted either by a quark or by an antiquark does not produce the effect we are now discussing. The diagrams \(\mathcal{M}_1\) and \(\mathcal{M}_2\) are identical, and the interference is positive.

  2. The authors compensate these negative contributions by introducing the color-octet mechanism. It may be an interesting question to motivate the presence of color-octet contribution in the photon fragmentation case \(\gamma ^*\rightarrow \chi _c\gamma \).

References

  1. E. Braaten, T.C. Yuan, Phys. Rev. D 50, 3176 (1994)

    Article  ADS  Google Scholar 

  2. E. Braaten, Y.-Q. Chen, Phys. Rev. D 55, 2693 (1996)

    Article  ADS  Google Scholar 

  3. P.A. Zyla et al, Particle Data Group, Prog. Theor. Exp. Phys. 2020, 083C01 (2020)

  4. E.J. Eichten, C. Quigg, Phys. Rev. D 49, 5845 (1994)

    Article  ADS  Google Scholar 

  5. S. Fleming, A.K. Leibovich, Phys. Rev. Lett. 90, 032001 (2003)

    Article  ADS  Google Scholar 

  6. S. Fleming, A.K. Leibovich, T. Mehen, Phys. Rev. D 68, 094011 (2003)

    Article  ADS  Google Scholar 

  7. S. Fleming, A.K. Leibovich, T. Mehen, Phys. Rev. D 74, 114004 (2006)

    Article  ADS  Google Scholar 

  8. M. Beneke, I.Z. Rothstein, M.B. Wise, Phys. Lett. B 40, 8373 (1997)

    Google Scholar 

  9. M. Beneke, in Proceedings of Second Workshop on Continuous Advances in QCD, Minneapolis, M. Polikarpov (ed.), World Scientific, Singapore, 1996; [hep-ph/9605462]

  10. S.P. Baranov, Phys. Rev. D 91, 034011 (2015)

    Article  ADS  Google Scholar 

  11. H. Krasemann, Z. Phys. C 11, 89 (1979)

    Google Scholar 

  12. G. Guberina, J. Kühn, R. Peccei, R. Rückl, Nucl. Phys. B 17, 4317 (1980)

    Google Scholar 

Download references

Acknowledgements

The author thanks Andrei Prokhorov who pointed the author’s attention to the problem. This work was supported by the DESY Directorate in the framework of Moscow-DESY project on Monte Carlo implementations for HERA-LHC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. P. Baranov.

Appendix: Off-shell production amplitudes for \(^3P_J^{[1]}\) states

Appendix: Off-shell production amplitudes for \(^3P_J^{[1]}\) states

Here we consider the gluon splitting subprocess

$$\begin{aligned} g^*(k_1,\epsilon _1,a)\rightarrow g(k_2,\epsilon _2,b) + c(p_c) + {\bar{c}}(p_{{\bar{c}}}), \end{aligned}$$
(14)

where the symbols in the parentheses indicate the momentum, the polarization, and the color of the interacting quanta. The produced quarks form a bound state \(p_{\chi }=p_c+p_{{\bar{c}}}\) with spin momentum \(S=1\) and angular orbital momentum \(L=1\).

The calculation of this subprocess at \({{\mathcal {O}}}(\alpha _s^2)\) refers to two Feynman diagrams:

(15)

with the property \({\mathcal{M}}_1={\mathcal{M}}_2\). The color factor is universal and is equal to \(\delta ^{ab}/2\sqrt{3}\). The amplitudes \({\mathcal{M}}_i\) contain spin projection operator which selects the spin-triplet \(c{\bar{c}}\) state:

(16)

where \(m_c\) is the c-quark mass and \(\epsilon _{S}\) is the \(c{\bar{c}}\) spin polarization vector.

The orbital angular momentum L is associated with the relative momentum q of the quarks in a bound state. The relative momentum q is defined as

$$\begin{aligned} p_c=\frac{1}{2}p_\chi +q,\quad p_{{\bar{c}}}=\frac{1}{2}p_\chi -q. \end{aligned}$$
(17)

According to a general formalism developed in [11, 12], the terms showing no dependence on q are identified with the contributions to the \(L=0\) state; the terms linear in \(q^\alpha \) are related to the \(L=1\) state with the proper polarization vector \(\epsilon ^\alpha \) (see below); the quadratic terms \(q^\alpha q^\beta \) refer to the \(L=2\) state with the polarization tensor \(\epsilon ^{\alpha \beta }\); and so on. The decomposition of \({\mathcal{M}}\) in powers of q is carried out by expanding the subprocess amplitude as

$$\begin{aligned} {\mathcal{M}}(q)={\mathcal{M}}|_{q{=}0} + q^\alpha (\partial {\mathcal{M}}/\partial q^\alpha )|_{q{=}0} + ..., \end{aligned}$$
(18)

where q is assumed to be a small quantity.

The amplitude \({\mathcal{M}}(q)\) has to be multiplied by the bound state wave function \(\Psi (q)\) and integrated over q. A term-by-term integration of Eq. (18) is performed using the relations

$$\begin{aligned} \int \frac{\mathrm{{d}}^3q}{(2\pi )^3}\Psi (q)= & {} \frac{1}{\sqrt{4\pi }}{\mathcal{R}}(x{=}0), \end{aligned}$$
(19)
$$\begin{aligned} \int \frac{\mathrm{{d}}^3q}{(2\pi )^3}q^\alpha \Psi (q)= & {} -i\epsilon _L^\alpha \frac{\sqrt{3}}{\sqrt{4\pi }}{\mathcal{R}}'(x{=}0), \end{aligned}$$
(20)

etc., where \({\mathcal{R}}(x)\) is the radial wave function in the coordinate representation (the Fourier transform of \(\Psi (q)\)). Taking the trace in (15) and selecting the terms linear in q, with further replacing q with \(\epsilon _L\), yield:

$$\begin{aligned} {\mathcal{M}}_1= & {} {\mathcal{M}}_2 = 16\pi \alpha _s \sqrt{3/4\pi }\,{\mathcal{R}}'(0)/(2m_c)^{3/2} \nonumber \\&\quad \,\times \,\Bigl \{\Bigr . \,\bigl [\, (k_1 e_2)\,(\epsilon _1\epsilon _S) + (k_2\epsilon _1)\,(\epsilon _2\epsilon _S) - (k_3\epsilon _S)\,(\epsilon _1\epsilon _2) \bigr ]\nonumber \\&\quad \times \, 4m_c^2\,(k_3\epsilon _L)/(k_1 k_2)^2\nonumber \\&\quad - \bigl [ (k_1k_2)\,(\epsilon _1\epsilon _S)\,(\epsilon _2\epsilon _L) - (k_1 k_1)\,(\epsilon _1\epsilon _S)\,(\epsilon _2\epsilon _L) \bigr . \nonumber \\&\quad + (k_1 k_2)\,(\epsilon _1\epsilon _L)\,(\epsilon _2\epsilon _S) - (k_2k_2)\,(\epsilon _1\epsilon _L)\,(\epsilon _2\epsilon _S)\nonumber \\&\quad + (k_3\epsilon _S)\,(p_\chi \epsilon _1)\,(\epsilon _2\epsilon _L) - (k_3\epsilon _S)\,(p_\chi \epsilon _2)\,(\epsilon _1\epsilon _L)\nonumber \\&\quad - \bigl . (k_3\epsilon _L)\,(p_\chi \epsilon _1)\,(\epsilon _2\epsilon _S) + (k_3\epsilon _L)\,(p_\chi \epsilon _2)\,(\epsilon _1\epsilon _S) \,\bigr ] \nonumber \\&\quad /(k_1 k_2) \Bigl .\Bigr \} \end{aligned}$$
(21)

The polarization vectors \(\epsilon _S\) and \(\epsilon _L\) are defined as explicit four vectors. In the frame where the z axis is oriented along the quarkonium momentum vector, \(p_{\chi }=(0,\,0,\,|p_{\chi }|,\,E_{\chi })\), these polarization vectors read

$$\begin{aligned} \epsilon (\pm 1) = (\pm 1,\,i,\,0,\,0)/\sqrt{2},\quad \epsilon (0) = (0,\,0,\,E_{\chi },\,|p_{\chi }|)/m_{\chi }. \end{aligned}$$

States with definite \(S_z\) and \(L_z\) can be translated into physical states \(\chi _J\) with definite total angular momentum J and its projection \(J_z\) using Clebsch–Gordan coefficients:

$$\begin{aligned} |\chi (J,J_z)\rangle =\sum _{L_z,S_z} \langle 1,L_z;1,S_z|J,J_z \rangle \;|\epsilon _L,\epsilon _S\rangle \end{aligned}$$
(22)

This completes our derivation of the production matrix element. The resulting expression has been explicitly tested for gauge invariance by substituting the gluon momenta \(k_i\) for their polarization vectors \(\epsilon _i\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baranov, S.P. Positively defined color-singlet fragmentation function \(g \rightarrow {\chi _{cJ}}\). Eur. Phys. J. Plus 136, 836 (2021). https://doi.org/10.1140/epjp/s13360-021-01836-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01836-8

Navigation