Skip to main content
Log in

First combined application of photoacoustic and optical techniques to the study of an historical oil painting

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Optical techniques are routinely applied in artworks analysis to obtain structural, morphological, and compositional information on the examined object in a non-invasive way. However, the complex structure of paintings, which can be sketched as multi-layer systems often including non-transparent layers, can hamper the penetration of the optical probe, making the non-invasive sectioning particularly challenging. Recently, cutting-edge photoacoustic (PA) methods have been tested on painted mock-ups to overcome the above-described detection limit of pure optical techniques, giving promising results. In this work, for the first time, PA measurements were taken on a nineteenth-century painting. Using a multi-modal approach, the effectiveness of the technique in revealing hidden features and providing cross-sectional measurements was assessed in comparison with other well-established pure optical techniques, namely multispectral Vis–NIR reflectography, UV imaging, fibre optics reflectance spectroscopy (FORS), optical coherence tomography (OCT), and laser scanning microprofilometry. Data integration allowed highlighting the capability of each method, proving the effectiveness of the proposed multi-modal approach. This successful application of the PA method on a real case study paves the way for its introduction among the other non-invasive techniques for paintings analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J. Striova, A. Dal Fovo, R. Fontana, R., La Rivista del Nuovo Cimento, 1–52 (2020)

  2. C. Cucci, A. Casini, Hyperspec. Imag. 32 (2020)

  3. E. Herens, C. Defeyt, P. Walter, D. Strivay, Herit. Sci. 5, 14 (2017)

    Article  Google Scholar 

  4. J. Striova, C. Ruberto, M. Barucci, J. Blažek, D. Kunzelman, A. Dal Fovo, E. Pampaloni, R. Fontana, Angew. Chem. 57, 1–6 (2018)

    Article  Google Scholar 

  5. J.K. Delaney, D.M. Conover, K. Dooley, L. Glinsman, K. Janssens, M. Loew, Herit. Sci. 6, 31 (2018)

    Article  Google Scholar 

  6. E. Cloutis, L. Norman, M. Cuddy, P. Mann, J. Near Infrared Spectrosc. 24(2), 119–140 (2016)

    Article  ADS  Google Scholar 

  7. M. Hain, J. Bartl, V. Jacko, Meas. Sci. Rev. 3, 9–12 (2003)

    Google Scholar 

  8. E. Ravaud, L. Pichon, E. Laval, V. Gonzalez, M. Eveno, T. Calligaro, Appl. Phys. A 122, 17 (2016)

    Article  ADS  Google Scholar 

  9. D. Thurrowgood, D. Paterson, M.D. De Jonge, R. Kirkham, S. Thurrowgood, D.L. Howard, Sci. Rep. 6, 29594 (2016)

    Article  ADS  Google Scholar 

  10. G. Van der Snickt, A. Martins, J.K. Delaney, K. Janssens, J. Zeibel, M. Duffy, C. McGlinchey, B. Van Driel, J. Dik, Appl. Spectrosc. 70, 57–67 (2016)

    Article  ADS  Google Scholar 

  11. S. Jane, R. Barker, J. Chad, U.S.A. Microsc, Anal. 55, 31 (1995)

    Google Scholar 

  12. P. Targowski, M. Iwanika, Appl. Phys. A 106, 265–277 (2012)

    Article  ADS  Google Scholar 

  13. P. Targowski, M. Iwanicka, M. Sylwestrzak, C. Frosinini, J. Striova, R. Fontana, Angew. Chem. 57, 7396–7400 (2018)

    Article  Google Scholar 

  14. G. Latour, G. Georges, L. Siozade, C. Deumié, J.-P. Echard, Proc. SPIE 7391, 73910J (2009)

    Article  ADS  Google Scholar 

  15. B. Łydżba-Kopczyńska, M. Iwanicka, M. Kowalska, P. Targowski, X-ray Spectrom. 50(4), 384–400 (2021)

    Article  ADS  Google Scholar 

  16. C. L. Koch Dandolo, V. Detalle, J. B. Bodiguel, M. Lopez, X. Bai, D. Martos-Levif, A. Genty-Vincent, C. Pasquali, M. Menu, Stud. Cons., 1–10 (2020)

  17. J. Striova, A. Dal Fovo, V. Fontani, M. Barucci, E. Pampaloni, M. Raffaelli, R. Fontana, Microchem. J. 138, 65–71 (2018)

    Article  Google Scholar 

  18. M. Mari, G. Filippidis, Sustainability 12, 1409 (2020)

    Article  Google Scholar 

  19. G. Filippidis, G.J. Tserevelakis, A. Selimis, C. Fotakis, Appl. Phys. A 118, 417–423 (2015)

    Article  ADS  Google Scholar 

  20. A. Dal Fovo, M. Sanz, M. Oujja, S. Mattana, M. Marchetti, R. Cicchi, R. Fontana, M. Castillejo, Microchem. J. 154, 104568 (2020)

    Article  Google Scholar 

  21. G.J. Tserevelakis, I. Vrouvaki, P. Siozos, K. Melessanaki, K. Hatzigiannakis, C. Fotakis, G. Zacharakis, Sci. Rep. 7, 747 (2017)

    Article  ADS  Google Scholar 

  22. E.L. Von Aderkas, M.M. Barsan, D.F.R. Gilson, I.S. Butler, Spectrochim. Acta A 77(5), 954 (2010)

    Article  ADS  Google Scholar 

  23. G.J. Tserevelakis, A. Dal Fovo, K. Melessanaki, R. Fontana, G. Zacharakis, J. Appl. Phys. 123, 12 (2018)

    Article  Google Scholar 

  24. A. Dal Fovo, G.J. Tserevelakis, A. Papanikolaou, G. Zacharakis, R. Fontana, Opt. Lett. 44, 4 (2019)

    Google Scholar 

  25. G.J. Tserevelakis, P. Siozos, A. Papanikolaou, K. Melessanaki, G. Zacharakis, Ultrasonics 98, 94–98 (2019)

    Article  Google Scholar 

  26. J.H. Stoner, J. Am. Inst. Conserv. 33(2), 131–140 (1994)

    Google Scholar 

  27. P. Ackroyd, Stud. Conserv. 47(sup1), 3–14 (2002)

    Article  Google Scholar 

  28. T. Moon, M.R. Schilling, S. Thirkettle, Stud. Conserv. 37(1), 42–52 (1992)

    Article  Google Scholar 

  29. F.A. Kruse, A.B. Lefkoff, J.W. Boardman, K.B. Heidebrecht, A.T. Shapiro, P.J. Barloon, A.F.H. Goetz, Remote Sens. Environ. 44, 145–163 (1993)

    Article  ADS  Google Scholar 

  30. A. Dal Fovo, J. Striova, E. Pampaloni, A. Fedele, M.M. Morita, D. Amaya, F. Grazzi, M. Cimò, C. Cirrincione, R. Fontana, Microchem. J. 153, 104472 (2020)

    Article  Google Scholar 

  31. F.A. Kruse, A.B. Lefkoff, J.W. Boardman, K.B. Heidebrecht, A.T. Shapiro, P.J. Barloon, A.F.H. Goetz, Remote Sens. Environ. 44(2–3), 145–163 (1993)

    Article  ADS  Google Scholar 

  32. P. Carcagnì, C. Daffara, R. Fontana, M.C. Gambino, M. Mastroianni, C. Mazzotta, E. Pampaloni, L. Pezzati, Optical micro-profilometry for archaeology. In Optical Methods for Arts and Archaeology (Vol. 5857, p. 58570F). International Society for Optics and Photonics

  33. E. Pampaloni, R. Bellucci, P. Carcagni, A. Casaccia, R. Fontana, M.C. Gambino, R. Piccolo, P. Pingi, L. Pezzati, Three-dimensional survey of paint layer. In O3A: Optics for Arts, Architecture, and Archaeology (Vol. 6618, p. 66180F). International Society for Optics and Photonics

  34. A. Nevin, D. Comelli, I. Osticioli, Anal. Bioanal. Chem. 395, 2139–2149 (2009)

    Article  Google Scholar 

  35. E.R. De la Rie, Stud. Conservat. 33, 53–70 (1988)

    Google Scholar 

  36. A. Nevin, D. Comelli, G. Valentini, D. Anglos, A. Burnstock, S. Cather, R. Cubeddu, Anal. Bioanal. Chem. 388, 1897–1905 (2007)

    Article  Google Scholar 

  37. N. Eastaugh, V. Walsh, T. Chaplin, R. Siddall, Pigment Compendium: A Dictionary of Historical Pigments (Routledge, New York, 2007)

    Book  Google Scholar 

  38. R.J. Gettens, H. Kuhn, W.T. Chase, Lead white, in Artists’ pigments: a handbook of their history and characteristics, vol. 2, ed. by A. Roy (Oxford University Press, New York, 1993), pp. 67–81

    Google Scholar 

  39. M. Bacci, M. Picollo, G. Trumpy, M. Tsukada, D. Kunzelman, J. Am. Inst. Conserv. 46(1), 27–37 (2007)

    Article  Google Scholar 

  40. T. Miyoshi, M. Ikeya, S. Kinoshita, T. Kushida, Jpn. J. Appl. Phys. 21(7R), 1032 (1982)

    Article  ADS  Google Scholar 

  41. E.R. De La Rie, Stud. Conserv. 27(1), 1–7 (1982)

    Google Scholar 

  42. L. Pronti, A.C. Felici, M. Ménager, C. Vieillescazes, M. Piacentini, Appl. Spectrosc. 71(12), 2616–2625 (2017)

    Article  ADS  Google Scholar 

  43. A. Pelagotti, L. Pezzati, N. Bevilacqua, V. Vascotto, V. Reillon, C. Daffara, A study of UV fluorescence emission of painting materials. In: Art ‘05–8th International Conference on Non-Destructive Investigations and Microanalysis for the Diagnostics and Conservation of the Cultural and Environmental Heritage. Lecce, Italy (p. A97)

  44. N.F. Barnes, J. Opt. Soc. Am. 29, 208–214 (1939)

    Article  ADS  Google Scholar 

  45. J. Rutherford, R.J. Gettens, H. Ku¨hn, W.T. Chase. ‘‘Lead White’’. In: A. Roy (ed.) Artists’ Pigments: A Handbook of Their History and Characteristics, Vol. 2. Washington, D.C.: National Gallery of Art, pp.67–81 (1993)

  46. J. Krautkrämer, H. Krautkrämer, Ultrasonic Testing of Materials (Springer, New York, 2013)

    Google Scholar 

  47. G. Wissmeyer, M.A. Pleitez, A. Rosenthal, V. Ntziachristos, Light Sci. Appl. 7(1), 1–16 (2018)

    Article  Google Scholar 

  48. B. Dong, C. Sun, H.F. Zhang, IEEE Trans. Biomed. Eng. 64(1), 4–15 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

Conservator Ezio Buzzegoli is gratefully acknowledged for providing the painting analysed in this study and for the valuable help in the interpretation of the results.

Funding

This research was supported by LASERLAB-EUROPE (grant agreement no. 871124, European Union's Horizon 2020 research and innovation programme); Regione Toscana (POR FSE 2014–2020, “Giovanisì”, Intervention Program “CNR4C”, CUP B15J19001040004), PpQSense Srl.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alice Dal Fovo.

Ethics declarations

Conflicts of interest

The author declares that they have no conflicts of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 7518 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dal Fovo, A., Tserevelakis, G.J., Klironomou, E. et al. First combined application of photoacoustic and optical techniques to the study of an historical oil painting. Eur. Phys. J. Plus 136, 757 (2021). https://doi.org/10.1140/epjp/s13360-021-01739-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01739-8

Navigation