Skip to main content
Log in

Assessment of the ageing of triterpenoid paint varnishes using fluorescence, Raman and FTIR spectroscopy

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The assessment of the influence of natural and artificial ageing on the spectrofluorescence of triterpenoid varnishes dammar and mastic is the focus of this work. Both Fourier transform infrared (FTIR) microscopy using attenuated total reflectance and Raman spectroscopy have been employed for complementary molecular analysis of samples. Synchronous fluorescence spectroscopy, excitation emission spectroscopy, and statistical analysis of data have been used to monitor changes in the optical properties of varnish samples. Assessment of naturally and artificially aged samples using excitation emission spectroscopy suggests that extensive exposure to visible light does not lead to easily appreciable differences in the fluorescence of mastic and dammar; cluster analysis has been used to assess changes, which occur with artificial ageing under visible light, indicating that differences in the fluorescence spectra of aged triterpenoids may be insufficient for their discrimination. The results highlight significant differences between the initial fluorescence of films of dammar and mastic and the fluorescence, which develops with ageing and oxidation, and specific markers, which change with ageing in FTIR and Raman spectra, have been identified.

Excitation emission spectra of films triterpenoid varnishes mastic and dammar have been recorded as a function of ageing. Using multivariate statistical analysis, dedrograms of contours of fluorescene excitation emission spectra are used to assess the differences in spectra of dammar and mastic

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. de la Rie ER (1982) Stud Conserv 27:65–69

    Article  Google Scholar 

  2. de la Rie ER (1988) Stud Conserv 33:53–70

    Article  Google Scholar 

  3. Larson LJ, Shin K-SK, Zink JI (1991) J Am Inst Conserv 30:89–104

    Article  Google Scholar 

  4. Anglos D, Solomidou M, Zergioti I, Zafiropulos V, Papazoglou TG, Fotakis C (1996) Appl Spectrosc 50:1331–1334

    Article  CAS  Google Scholar 

  5. Domenech-Carbo MT (2008) Anal Chim Acta 621:109–139

    Article  CAS  Google Scholar 

  6. Elias M, Menu M (2001) Rev Metall-Paris 98:777–782

    Article  Google Scholar 

  7. Elias M, Menu M (2001) Surf Eng 17:225–229

    Article  CAS  Google Scholar 

  8. Latour G, Elias M, Frigerio JM (2007) J Opt Soc Am A 24:3045–3053

    Article  CAS  Google Scholar 

  9. Miliani C, Favaro G, Romani A (1998) Spectrochim Acta 54:581–588

    Article  Google Scholar 

  10. Nevin A, Cather S, Burnstock A, Anglos D (2008) Appl Spectrosc 62:481–489

    Article  CAS  Google Scholar 

  11. Thoury M, Elias M, Frigerio JM, Barthou C (2007) Appl Spectrosc 61:1275–1282

    Article  CAS  Google Scholar 

  12. Nevin A, Comelli D, Valentini G, Anglos D, Burnstock A, Cather S, Cubeddu R (2007) Anal Bioanal Chem 388:1897–1905

    Article  CAS  Google Scholar 

  13. Romani A, Clementi C, Miliani C, Brunetti BG, Sgamellotti A, Favaro G (2008) Appl Spectrosc 62:1395–1399

    Article  CAS  Google Scholar 

  14. Nevin A, Anglos D, Cather S, Burnstock A (2008) Appl Phys A 92:69–76

    Article  CAS  Google Scholar 

  15. van der Doelen GA, van den Berg KJ, Boon JJ, Shibayama N, de la Rie ER, Genuit WJ (1998) J Chromatogr A 809:21–37

    Article  Google Scholar 

  16. Dietemann P, Edelmann MJ, Meisterhans C, Pfeiffer C, Zumbuhl S, Knochenmuss R, Zenobi R (2000) Helv Chim Acta 83:1766–1777

    Article  CAS  Google Scholar 

  17. Dietemann P, Kalin M, Zumbuhl S, Knochenmuss R, Wulfert S, Zenobi R (2001) Anal Chem 73:2087–2096

    Article  CAS  Google Scholar 

  18. Feller R (1994) Accelerated ageing: photochemical and thermal aspects. Getty Conservation Institute, Los Angeles

    Google Scholar 

  19. Colombini MP, Modugno F, Giannarelli S, Fuoco R, Matteini M (2000) Microchem J 67:385–396

    Article  CAS  Google Scholar 

  20. Scalarone D, van der Horst J, Boon JJ, Chiantore O (2003) J Mass Spectrom 38:607–617

    Article  CAS  Google Scholar 

  21. Domenech-Carbo MT, Kuckova S, de la Cruz-Canizares J, Osete-Cortina L (2006) J Chromatogr A 1121:248–258

    Article  CAS  Google Scholar 

  22. Dietemann P, Higgitt C, Kalin M, Edelmann MJ, Knochenmuss R, Zenobi R (2009) J Cult Herit 10:30–40

    Article  Google Scholar 

  23. Vandenabeele P, Wehling B, Moens L, Edwards H, De Reu M, Van Hooydonk G (2000) Anal Chim Acta 407:261–274

    Article  CAS  Google Scholar 

  24. Brody RH, Edwards HGM, Pollard AM (2002) Biopolymers 67:129–141

    Article  CAS  Google Scholar 

  25. Christofides C, Castellon B, Othonos A, Polikreti K, de Deyne C (2004) Thin Solid Films 455–56:207–212

    Article  CAS  Google Scholar 

  26. Polikreti K, Othonos A, Christofides C (2005) Appl Spectrosc 59:94–99

    Article  CAS  Google Scholar 

  27. Elias M, Simonot L, Thoury M, Frigerio JM (2004) Opt Commun 231:25–33

    Article  CAS  Google Scholar 

  28. Berns RS, De La Rie ER (2003) Stud Conserv 48:251–262

    CAS  Google Scholar 

  29. Zheng W, Lau W, Cheng C, Soo KC, Olivo M (2003) Int J Cancer 104:477–481

    Article  CAS  Google Scholar 

  30. Guimet F, Ferre J, Boque R, Vidal M, Garcia J (2005) J Agric Food Chem 53:9319–9328

    Article  CAS  Google Scholar 

  31. Chen W, Westerhoff P, Leenheer JA, Booksh K (2003) Environ Sci Technol 37:5701–5710

    Article  CAS  Google Scholar 

  32. Nevin A, Comelli D, Valentini G, Cubeddu R (2009) Anal Chem 81:1784–1791

    Article  CAS  Google Scholar 

  33. Saunders D, Kirby J (2001) Conservator 25:95–104

    Google Scholar 

  34. Lau D, Livett M, Prawer S (2008) J Raman Spectrosc 39:545–552

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was partially supported by the Italian Ministero dell'Istruzione, dell’Università e della Ricerca (MIUR) within the project PRIN 2007 (prot. 2007AKK9LX).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Austin Nevin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nevin, A., Comelli, D., Osticioli, I. et al. Assessment of the ageing of triterpenoid paint varnishes using fluorescence, Raman and FTIR spectroscopy. Anal Bioanal Chem 395, 2139–2149 (2009). https://doi.org/10.1007/s00216-009-3005-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-3005-4

Keywords

Navigation