Skip to main content

Advertisement

Log in

Non-commutative space: boon or bane for quantum engines and refrigerators

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Various quantum systems are considered as the working substance for the analysis of quantum heat cycles and quantum refrigerators. The ongoing technological challenge is how efficiently can a heat engine convert thermal energy to mechanical work. The seminal work of Carnot has proposed a fundamental upper limit—the Carnot limit on the efficiency of the heat engine. However, the heat engines can be operated beyond the fundamental upper limit by exploiting non-equilibrium reservoirs. Here, the change in the space structure introduces the non-equilibrium effect. So, a question arises whether a change in the space structure can provide any boost for the quantum engines and refrigerators. The efficiency of the heat cycle and the coefficient of performance (COP) of the refrigerator cycles in the non-commutative space are analyzed here. The efficiency of the quantum heat engines gets a boost with the change in the space structure than the traditional quantum heat engine but the effectiveness of the non-commutative parameter is less for the efficiency compared to the COP of the refrigerator. There is a steep boost for the coefficient of performance of the refrigerator cycles for the non-commutative space harmonic oscillator compared to the harmonic oscillator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hartland S. Snyder, The electromagnetic field in quantized space-time. Phys. Rev. 72(1), 68 (1947)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. G. Landi, An Introduction to Noncommutative Spaces and Their Geometries (Springer, Berlin, 1997)

    MATH  Google Scholar 

  3. A. Connes, M.A. Rieffel, Yang–Mills for noncommutative two-tori. Contemp. Math. 62, 237 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  4. B. Bagchi, A. Fring, Minimal length in quantum mechanics and non-Hermitian Hamiltonian systems. Phys. Lett. A 373, 4307–4310 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Sanjib Dey, Véronique Hussin, Entangled squeezed states in noncommutative spaces with minimal length uncertainty relations. Phys. Rev. D 91(12), 124017 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  6. Paul Skrzypczyk, Anthony J. Short, Sandu Popescu, Work extraction and thermodynamics for individual quantum systems. Nat. Commun. 5, 4185 (2014)

    Article  ADS  Google Scholar 

  7. Michal Kolář et al., Quantum bath refrigeration towards absolute zero: challenging the unattainability principle. Phys. Rev. Lett. 109(9), 090601 (2012)

    Article  ADS  Google Scholar 

  8. J. Ronagel, O. Abah, F. Schmidt-Kaler, K. Singer, E. Lutz, Nanoscale heat engine beyond the Carnot limit. Phys. Rev. Lett. 112, 030602 (2014)

    Article  ADS  Google Scholar 

  9. R. Dorner, S.R. Clark, L. Heaney, R. Fazio, J. Goold, V. Vedral, Extracting quantum work statistics and fluctuation theorems by single-qubit interferometry. Phys. Rev. Lett. 110, 230601 (2013)

    Article  ADS  Google Scholar 

  10. O. Abah, J. Rossnagel, G. Jacob, S. Deffner, F. Schmidt Kaler, K. Singer, E. Lutz, Single-ion heat engine at maximum power. Phys. Rev. Lett. 109, 203006 (2012)

    Article  ADS  Google Scholar 

  11. A. Mari, J. Eisert, Cooling by heating: very hot thermal light can significantly cool quantum systems. Phys. Rev. Lett. 108, 120602 (2012)

    Article  ADS  Google Scholar 

  12. K. Zhang, F. Bariani, P. Meystre, Quantum opto-mechanical heat engine. Phys. Rev. Lett. 112, 150602 (2014)

    Article  ADS  Google Scholar 

  13. A. Dechant, N. Kiesel, E. Lutz, All-optical nano-mechanical heat engine. Phys. Rev. Lett. 114, 183602 (2015)

    Article  ADS  Google Scholar 

  14. Jonas F.G. Santos, Alex E. Bernardini, Quantum engines and the range of the second law of thermodynamics in the noncommutative phase-space. Eur. Phys. J. Plus 132(6), 260 (2017)

    Article  Google Scholar 

  15. Jonas F.G. Santos, Noncommutative phase-space effects in thermal diffusion of Gaussian states. J. Phys. A Math. Theor. 52(40), 405306 (2019)

    Article  MathSciNet  Google Scholar 

  16. J.F.G. Santos, Heat flow and noncommutative quantum mechanics in phase-space. arXiv preprint arXiv:1912.11884 (2019)

  17. T. Pandit, P. Chattopadhyay, G. Paul, Non-commutative space engine: a boost to thermodynamic processes. arXiv preprint arXiv:1911.13105 (2019)

  18. A. Fring, L. Gouba, F.G. Scholtz, Strings from position-dependent noncommutativity. J. Phys. A Math. Theor. 43, 345401 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. I. Pikovski et al., Probing Planck-scale physics with quantum optics. Nat. Phys. 8, 393–397 (2012)

    Article  Google Scholar 

  20. M.M. Nieto, D.R. Truax, Squeezed states for general systems. Phys. Rev. Lett. 71, 2843 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. S. Dey, A. Fring, Squeezed coherent states for noncommutative spaces with minimal length uncertainty relations. Phys. Rev. D 86, 064038 (2012)

    Article  ADS  Google Scholar 

  22. S. Ghosh, P. Roy, Stringy coherent states inspired by generalized uncertainty principle. Phys. Lett. B 711, 423–427 (2012)

    Article  ADS  Google Scholar 

  23. Sanjib Dey, Andreas Fring, Thilagarajah Mathanaranjan, Non-Hermitian systems of Euclidean Lie algebraic type with real energy spectra. Ann. Phys. 346, 28–41 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. J.F.G. dos Santos et al., Non-Hermitian noncommutative quantum mechanics. Eur. Phys. J. Plus 134(7), 332 (2019)

    Article  Google Scholar 

  25. G.S. Agarwal, S. Chaturvedi, Quantum dynamical framework for Brownian heat engines. Phys. Rev. E 88, 012130 (2013)

    Article  ADS  Google Scholar 

  26. Valentin Blickle, Clemens Bechinger, Realization of a micrometre-sized stochastic heat engine. Nat. Phys. 8(2), 143 (2012)

    Article  Google Scholar 

  27. George Thomas, Debmalya Das, Sibasish Ghosh, Quantum heat engine based on level degeneracy. Phys. Rev. E 100(1), 012123 (2019)

    Article  ADS  Google Scholar 

  28. P. Chattopadhyay, A. Mitra, G. Paul, Bound on efficiency of heat engine from uncertainty relation viewpoint. arXiv preprint arXiv:1908.06804 (2019)

  29. Pritam Chattopadhyay, Goutam Paul, Relativistic quantum heat engine from uncertainty relation standpoint. Sci. Rep. 9(1), 1–12 (2019)

    Article  Google Scholar 

  30. X.-L. Huang, X.-Y. Niu, X.-M. Xiu, X.-X. Yi, Quantum stirling heat engine and refrigerator with single and coupled spin systems. Eur. Phys. J. D 68, 32 (2014)

    Article  ADS  Google Scholar 

  31. H.T. Quan, Y-x Liu, C.P. Sun, F. Nori, Quantum thermodynamic cycles and quantum heat engines. Phys. Rev. E 76, 031105 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  32. Ronnie Kosloff, Yair Rezek, The quantum harmonic Otto cycle. Entropy 19(4), 136 (2017)

    Article  ADS  Google Scholar 

  33. Rui Long, Wei Liu, Performance of quantum Otto refrigerators with squeezing. Phys. Rev. E 91(6), 062137 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  34. M. Huber, M. Perarnau-Llobet, K.V. Hovhannisyan, P. Skrzypczyk, C. Klckl, N. Brunner, A. Acn, Thermodynamic cost of creating correlations. New J. Phys. 17, 065008 (2015)

    Article  ADS  Google Scholar 

  35. T. Zhang, W.-T. Liu, P.-X. Chen, C.-Z. Li, Four-level entangled quantum heat engines. Phys. Rev. A 75, 062102 (2007)

    Article  ADS  Google Scholar 

  36. J. Wang, Z. Ye, Y. Lai, W. Li, J. He, Efficiency at maximum power of a quantum heat engine based on two coupled oscillators. Phys. Rev. E 91, 062134 (2015)

    Article  ADS  Google Scholar 

  37. G. Thomas, R.S. Johal, Coupled quantum otto cycle. Phys. Rev. E 83, 031135 (2011)

    Article  ADS  Google Scholar 

  38. Pritam Chattopadhyay, Ayan Mitra, Goutam Paul, Probing uncertainty relations in non-commutative space. Int. J. Theor. Phys. 58, 2619 (2019)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author gratefully acknowledges for the useful discussions and suggestions from Dr. Goutam Paul, Associate Prof. of Cryptology and Security Research Unit, R.C. Bose Center for Cryptology and Security, at Indian Statistical Institute, Kolkata and Mr. Tanmoy Pandit of Hebrew University of Jerusalem, Jerusalem, Israel. We thank the reviewer for constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pritam Chattopadhyay.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chattopadhyay, P. Non-commutative space: boon or bane for quantum engines and refrigerators. Eur. Phys. J. Plus 135, 302 (2020). https://doi.org/10.1140/epjp/s13360-020-00318-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00318-7

Navigation