Skip to main content
Log in

A quantum heat engine based on Tavis-Cummings model

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

This paper will investigate a four-stroke quantum heat engine based on the Tavis-Cummings model. The cycle of the heat engine is similar to the Otto cycle in classical thermodynamics. The relationship between output power as well as cycle efficiency and external physical system parameters are given. Under this condition, the entanglement behavior of the system will be studied. The system can show considerable entanglement by strictly controlling relevant parameters. Unlike common two-level quantum heat engines, efficiency is a function of temperature, showing interesting and unexpected phenomena. Several ways to adjust engine properties by external parameters are proposed, with which the output power and efficiency can be optimized. The heat engine model exhibits high efficiency and output power with the participation of a small number of photons, and decay rapidly as the number of photons increases in entangled area but shows interesting behaviors in non-entangled area of photon numbers.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Scovil, E. Schulz-DuBois, Phys. Rev. Lett. 2, 262 (1959)

    Article  ADS  Google Scholar 

  2. R. Alicki, J. Phys. A: Math. Gen. 12, L103 (1979)

    Article  ADS  Google Scholar 

  3. T.D. Kieu, Phys. Rev. Lett. 93, 140403 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  4. G.F. Zhang, Eur. Phys. J. D 49, 123 (2008)

    Article  ADS  Google Scholar 

  5. W.K. Wootters, Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  Google Scholar 

  6. J. Wang, J. He, X. He, Phys. Rev. E 84, 041127 (2011)

    Article  ADS  Google Scholar 

  7. G.F. Zhang, X.C. Xie, Eur. Phys. J. D 60, 423 (2010)

    Article  ADS  Google Scholar 

  8. S. Hill, W.K. Wootters, Phys. Rev. Lett. 78, 5022 (1997)

    Article  ADS  Google Scholar 

  9. H. Wang, S. Liu, J. He, Phys. Rev. E 79, 041113 (2009)

    Article  ADS  Google Scholar 

  10. T. Zhang, W.T. Liu, P.X. Chen, C.Z. Li, Phys. Rev. A 75, 062102 (2007)

    Article  ADS  Google Scholar 

  11. E. Geva, R. Kosloff, J. Chem. Phys. 104, 7681 (1996)

    Article  ADS  Google Scholar 

  12. H. Quan, P. Zhang, C. Sun, Phys. Rev. E 72, 056110 (2005)

    Article  ADS  Google Scholar 

  13. B. Lin, J. Chen, Phys. Rev. E 67, 046105 (2003)

    Article  ADS  Google Scholar 

  14. A.Q. Shu, F. Wu, Acta Phys. Sinica (2016)

  15. F. Altintas, Ö.E. Müstecaplıoğlu, Phys. Rev. E 92, 022142 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  16. J. Chen, B. Lin, B. Hua, J. Phys. D: Appl. Phys. 35, 2051 (2002)

    Article  ADS  Google Scholar 

  17. M.O. Scully, K.R. Chapin, K.E. Dorfman, M.B. Kim, A. Svidzinsky, Proc. Natl. Acad. Sci. 108, 15097 (2011)

    Article  ADS  Google Scholar 

  18. K.E. Dorfman, D.V. Voronine, S. Mukamel, M.O. Scully, Proc. Natl. Acad. Sci. 110, 2746 (2013)

    Article  ADS  Google Scholar 

  19. R. Kosloff, T. Feldmann, Phys. Rev. E 65, 055102 (2002)

    Article  ADS  Google Scholar 

  20. J. Wang, J. He, Y. Xin, Phys. Scr. 75, 227 (2007)

    Article  ADS  Google Scholar 

  21. M.O. Scully, Phys. Rev. Lett. 88, 050602 (2002)

    Article  ADS  Google Scholar 

  22. J. Roßnagel, O. Abah, F. Schmidt-Kaler, K. Singer, E. Lutz, Phys. Rev. Lett. 112, 030602 (2014)

    Article  ADS  Google Scholar 

  23. M.O. Scully, M.S. Zubairy, G.S. Agarwal, H. Walther, Science 299, 862 (2003)

    Article  ADS  Google Scholar 

  24. R. Dillenschneider, E. Lutz, EPL (Europhys. Lett.) 88, 50003 (2009)

    Article  ADS  Google Scholar 

  25. M.O. Scully, Phys. Rev. Lett. 104, 207701 (2010)

    Article  ADS  Google Scholar 

  26. M.O. Scully, K.R. Chapin, K.E. Dorfman, M.B. Kim, A. Svidzinsky, Proc. Natl. Acad. Sci. 108, 15097 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-Feng Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, KW., Li, R. & Zhang, GF. A quantum heat engine based on Tavis-Cummings model. Eur. Phys. J. D 71, 230 (2017). https://doi.org/10.1140/epjd/e2017-80101-3

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2017-80101-3

Keywords

Navigation