Skip to main content
Log in

Multiparticle production and geometric scaling in 5.44 TeV Xe–Xe collisions at the CERN Large Hadron Collider using wounded quark model

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Recently, CERN Large Hadron Collider has performed a collision experiment of xenon–xenon (Xe–Xe) nuclei at \(\sqrt{s_{NN}} = 5.44\hbox {TeV}\). The experiment based on Xe–Xe nuclei can provide a deeper understanding of the particle production mechanism in QCD. In this article, we have studied midrapidity pseudorapidity density (\((\hbox {d}n_{\hbox {ch}}/\hbox {d}\eta )_{\eta =0}\)) of charged hadrons with respect to collision centrality using the modified version of wounded quark model (WQM). In WQM, we have constructed minimum-bias event sets in two different ways denoted as Class I and Class II. Further, we have shown the scaling behavior of \((\hbox {d}n_{\hbox {ch}}/\hbox {d}\eta )_{\eta =0}\) with respect to the number of participating quarks, \(N_{q}\). We observed that Class II results satisfy the experimental data quite well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. J. Cleymans, R. Sahoo, D.P. Mahapatra, D.K. Srivastava, S. Wheaton, Phys. Lett. B 660, 172 (2008)

    Google Scholar 

  2. R. Sahoo, A.N. Mishra, Int. J. Mod. Phys. E 23, 1450024 (2014)

    Google Scholar 

  3. R. Sahoo, A.N. Mishra, N.K. Behera, B.K. Nandi, Adv. High Energy Phys. 2015, 612390 (2015)

    Google Scholar 

  4. S.K. Tiwari, R. Sahoo, arXiv:1701.03323

  5. J. Adams et al. [STAR Collaboration], Phys. Rev. C 70, 054907 (2004)

  6. J. Adam et al. [ALICE Collaboration], Phys. Rev. C 94, 034903 (2016)

  7. S.S. Adler et al. [PHENIX Collaboration], Phys. Rev. C 71, 034908 (2005)

  8. J. Manjavidze, A. Sissakian, Phys. Rep. 346, 1 (2001)

    Google Scholar 

  9. I.M. Dremin, J.W. Gary, Phys. Rep. 349, 301 (2001)

    Google Scholar 

  10. L.V. Gribov, E.M. Levin, M.G. Ryskin, Phys. Rep. 100, 1 (1983)

    Google Scholar 

  11. E.M. Levin, M.G. Ryskin, Phys. Rep. 189, 267 (1990)

    Google Scholar 

  12. C.P. Singh, M. Shyam, S.K. Tuli, Phys. Rev. C 40, 1716 (1989)

    Google Scholar 

  13. M. Shyam, C.P. Singh, S.K. Tuli, Phys. Lett. B 164, 189 (1985)

    Google Scholar 

  14. C.P. Singh, M. Shyam, Phys. Lett. B 171, 125 (1986)

    Google Scholar 

  15. J. Adam et al. [ALICE Collaboration] arXiv:1509.07541

  16. E. Abbas et. al. [ALICE Collaboration], Phys. Lett. B 726, 610-622 (2013)

  17. B. Abelev et al. [ALICE Collaboration], Phys. Rev. C 88, 044910 (2013)

  18. B. Abelev et al. [ALICE Collaboration], Phys. Lett. B 754, 373-385 (2016)

  19. K. Aamodt et al. [ALICE Collaboration], Phys. Rev. Lett. 106, 032301 (2011)

  20. B.B. Back et al. [PHOBOS Collaboration], Phys. Rev. C 72, 031901(R) (2005)

  21. B. Abelev et al. [ALICE Collaboration], Phys. Lett. B 719, 29-41 (2013)

  22. B.B. Back et al. [PHOBOS Collaboration], Phys. Rev. Lett. 93, 082301 (2004)

  23. A. Adare et al. [PHENIX Collaboration], Phys. Rev. C 93, 024901 (2016)

  24. S. Acharya et al. [ALICE Collaboration], Phys. Lett. B 784, 82 (2018)

  25. S. Acharya et al. [ALICE Collaboration], Phys. Lett. B 790, 35 (2019)

  26. J.Y. Ollitrault, Phy. Rev. D 46, 229 (1992)

    Google Scholar 

  27. X.N. Wang, Nucl. Phys. A 98, 750 (2005)

    Google Scholar 

  28. S.T.A.R. Collaboration, J. Adam et al., Nucl. Phys. A 757, 102 (2005)

    Google Scholar 

  29. U. Heniz, M. Jacob, arXiv:nucl-th/0002042

  30. B. Schenke, P. Tribedy, R. Venugopalan, Phys. Rev. C 89, 064908 (2014)

    Google Scholar 

  31. S. Chatterjee, P. Tribedy, Phys. Rev. C 92, 011902(R) (2015)

    Google Scholar 

  32. A. Kuhlman, U. Heinz, Phys. Rev. C 72, 037901 (2005)

    Google Scholar 

  33. E. V. Shuryak, arXiv:nucl-th/9906062

  34. G. Giacalone, J.N. Hostler, M. Luzum, J.Y. Ollitrault, Phys. Rev. C 97, 034904 (2018)

    Google Scholar 

  35. D. Kharzeev, Phys. Lett. B 633, 206 (2006)

    Google Scholar 

  36. D.E. Kharzeev, L.D. McLerran, H.J. Warringa, Nucl. Phys. A 803, 227 (2008)

    Google Scholar 

  37. Z.W. Lin, C.M. Ko, B.A. Li, B. Zhang, S. Pal, Phys. Rev. C 73, 064901 (2005)

    Google Scholar 

  38. N. Armesto, C.A. Salgado, U.A. Wiedemann, Phys. Rev. Lett. 94, 022002 (2005)

    Google Scholar 

  39. H. Niemi, K.J. Eskola, R. Paatelainen, Phys. Rev. C 93, 024907 (2016)

    Google Scholar 

  40. H. Niemi, K.J. Eskola, R. Paatelainen, K. Tuominen, Phys. Rev. C 93, 014912 (2016)

    Google Scholar 

  41. K.J. Eskola, H. Niemi, R. Paatelainen, K. Tuominen, Phys. Rev. C 97, 034911 (2018)

    Google Scholar 

  42. W.-T. Deng, X.-N. Wang, R. Xu, Phys. Rev. C 83, 014915 (2011)

    Google Scholar 

  43. R. Xu, W.-T. Deng, X.-N. Wang, Phys. Rev. C 86, 051901 (2012)

    Google Scholar 

  44. D. Kharzeev, E. Levin, M. Nardi, arXiv:hep-ph/0408050

  45. D. Kharzeev, M. Nardi, arXiv:nucl-th/0012025

  46. O.S.K. Chaturvedi, P.K. Srivastava, A. Kumar, B.K. Singh, Eur. Phys. J. Plus 131, 438 (2016)

    Google Scholar 

  47. O.S.K. Chaturvedi, P.K. Srivastava, A. Kumar, B.K. Singh, Eur. Phys. J. Plus 132, 430 (2017)

    Google Scholar 

  48. O.S.K. Chaturvedi, P.K. Srivastava, A. Singh, B.K. Singh, Eur. Phys. J. A 54, 46 (2018)

    Google Scholar 

  49. A. Bialas, W. Czyz, L. Lesniak, Phys. Rev. D 25, 2328 (1982)

    Google Scholar 

  50. V.V. Anisovich, M.N. Kobrinskii, J. Nyiri, YuM Shabelskii, Sov. Phys. Usp. 27, 12 (1984)

    Google Scholar 

  51. H.J. Lipkin, Phys. Lett. B 116, 175 (1982)

    Google Scholar 

  52. S. Fernbach, R. Serber, T.B. Taylor, Phys. Rev. 75, 1352 (1949)

    Google Scholar 

  53. T.F. Hoang, B. Cork, H.J. Crawford, Z. Phys. C 29, 611 (1985)

    Google Scholar 

Download references

Acknowledgements

OSKC is grateful to the Council of Scientific and Industrial Research (CSIR), New Delhi, for providing a research grant under the SRF scheme. PKS would like to thank IIT Ropar, India, for providing an institute postdoctoral research grant. AS acknowledges the financial support obtained from UGC under research fellowship scheme in central universities. This research work is supported partially by DST FIST, DST PURSE and UGC-CAS programs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. S. K. Chaturvedi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaturvedi, O.S.K., Srivastava, P.K., Singh, A. et al. Multiparticle production and geometric scaling in 5.44 TeV Xe–Xe collisions at the CERN Large Hadron Collider using wounded quark model. Eur. Phys. J. Plus 135, 265 (2020). https://doi.org/10.1140/epjp/s13360-020-00269-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00269-z

Navigation