Skip to main content
Log in

Centrality and transverse momentum dependencies of hadrons in Pb+Pb collisions at \(\sqrt{s_{NN}} = 5.02\) TeV and Xe+Xe collisions at \(\sqrt{s_{NN}} = 5.44\) TeV from a multi-phase transport model

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

In this paper, we study and predict the charged-particle pseudorapidity multiplicity density (\( \frac{\mathrm{d} N_{ch}}{\mathrm{d}\eta}\)), transverse momentum spectra of identified particles and their ratios in relativistic heavy ion collisions at the Large Hadron Collider (LHC), using the string-melting version of a multi-phase transport (AMPT) model with an improved quark coalescence method. We extend this improved AMPT model to the energy region available in the experiment and test its validity, in particular, by predicting the experimental observables. Results of the charged-particle pseudorapidity multiplicity density from AMPT model calculations for Pb+Pb collisions at \( \sqrt{s_{NN}}=5.02\) TeV are compared with the experimental data. Good agreements are generally found between the theoretical calculations and experimental data. But for Xe+Xe collisions at \( \sqrt{s_{NN}}=5.44\) TeV, the \( \frac{\mathrm{d} N_{ch}}{\mathrm{d}\eta}\) are systematically overestimated by 20% at different centralities with the same model parameters. We predict the \( p_T\) spectra of charged pions, kaons and protons as well as their ratios \( K/\pi\) and \( p/\pi\) at midrapidity (\( \vert y\vert < 0.5\)) in both Pb+Pb collisions at \( \sqrt{s_{NN}}=5.02\) TeV and Xe+Xe collisions at \( \sqrt{s_{NN}}=5.44\) TeV that are measured at LHC. The \( p_T\) spectra of identified particles in Pb+Pb collisions from the improved AMPT model are compared and found to be consistent with results from the iEBE-VISHNU hybrid model with TRENTo initial condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. STAR Collaboration (M.M. Aggarwal et al.), Phys. Rev. C 83, 024901 (2011)

    Article  Google Scholar 

  2. PHENIX Collaboration (A. Adare et al.), Phys. Rev. Lett. 101, 162301 (2008)

    Article  Google Scholar 

  3. B.I. Abelev, M.M. Aggarwal, Z. Ahammed et al., Phys. Rev. Lett. 97, 152301 (2006)

    Article  ADS  Google Scholar 

  4. ALICE Collaboration (J. Adam et al.), Phys. Rev. C 93, 034913 (2016)

    Article  ADS  Google Scholar 

  5. ALICE Collaboration (J. Adam et al.), Phys. Lett. B 772, 567 (2017)

    Article  ADS  Google Scholar 

  6. ALICE Collaboration (S. Acharya et al.), Phys. Lett. B 788, 166 (2019)

    Article  ADS  Google Scholar 

  7. W. Zhao, H.J. Xu, H. Song, Eur. Phys. J. C 77, 645 (2017)

    Article  ADS  Google Scholar 

  8. W. Zhao, L. Zhu, H. Zheng, C.M. Ko, H. Song, Phys. Rev. C 98, 054905 (2018)

    Article  ADS  Google Scholar 

  9. W. Zhao, Y. Zhou, H. Xu, W. Deng, H. Song, Phys. Lett. B 780, 495 (2018)

    Article  ADS  Google Scholar 

  10. P. Braun-Munzinger, K. Redlich, J. Stachel, Particle Production in Heavy Ion Collisions, in Quark-Gluon Plasma 3, edited by R.C. Hwa, X.-N. Wang (World Scientific, Singapore, 2004) p. 491

    Chapter  Google Scholar 

  11. G.L. Ma, Z.W. Lin, Phys. Rev. C 93, 054911 (2016)

    Article  ADS  Google Scholar 

  12. Y. He, Z.W. Lin, Phys. Rev. C 96, 014910 (2017)

    Article  ADS  Google Scholar 

  13. V. Greco, C.M. Ko, P. Levai, Phys. Rev. Lett. 90, 202302 (2003)

    Article  ADS  Google Scholar 

  14. R.J. Fries, B. Müller, C. Nonaka, S.A. Bass, Phys. Rev. Lett. 90, 202303 (2003)

    Article  ADS  Google Scholar 

  15. R.C. Hwa, C.B. Yang, Phys. Rev. C 70, 024905 (2004)

    Article  ADS  Google Scholar 

  16. B. Zhang, C.M. Ko, B.A. Li, Z.w. Lin, Phys. Rev. C 61, 067901 (2000)

    Article  ADS  Google Scholar 

  17. Z.W. Lin, C.M. Ko, B.A. Li, B. Zhang, S. Pal, Phys. Rev. C 72, 064901 (2005)

    Article  ADS  Google Scholar 

  18. Z.w. Lin, S. Pal, C.M. Ko, B.A. Li, B. Zhang, Phys. Rev. C 64, 011902 (2001)

    Article  ADS  Google Scholar 

  19. L. Zhu, C.M. Ko, X. Yin, Phys. Rev. C 92, 064911 (2015)

    Article  ADS  Google Scholar 

  20. ALICE Collaboration (S. Acharya et al.), Phys. Lett. B 790, 35 (2019)

    Article  ADS  Google Scholar 

  21. ALICE Collaboration (S. Ragoni), PoS LHCP2018, 085 (2018)

    Google Scholar 

  22. G. Giacalone, J. Noronha-Hostler, M. Luzum, J.Y. Ollitrault, Phys. Rev. C 97, 034904 (2018)

    Article  ADS  Google Scholar 

  23. S. Tripathy, S. De, M. Younus, R. Sahoo, Phys. Rev. C 98, 064904 (2018)

    Article  ADS  Google Scholar 

  24. C. Shen, Z. Qiu, H. Song, J. Bernhard, S. Bass, U. Heinz, Comput. Phys. Commun. 199, 61 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  25. K.J. Eskola, H. Niemi, R. Paatelainen, K. Tuominen, Phys. Rev. C 97, 034911 (2018)

    Article  ADS  Google Scholar 

  26. B.G. Zakharov, Eur. Phys. J. C 78, 427 (2018)

    Article  ADS  Google Scholar 

  27. X.N. Wang, M. Gyulassy, Phys. Rev. D 44, 3501 (1991)

    Article  ADS  Google Scholar 

  28. B.A. Li, C.M. Ko, Phys. Rev. C 52, 2037 (1995)

    Article  ADS  Google Scholar 

  29. ALICE Collaboration (B. Abelev et al.), Phys. Rev. C 88, 044909 (2013)

    Article  ADS  Google Scholar 

  30. S. Kundu, D. Mallick, B. Mohanty, Eur. Phys. J. A 55, 157 (2019)

    Article  ADS  Google Scholar 

  31. J. Xu, C.M. Ko, Phys. Rev. C 83, 034904 (2011)

    Article  ADS  Google Scholar 

  32. ALICE Collaboration (S. Acharya et al.), JHEP 11, 013 (2018)

    ADS  Google Scholar 

  33. H. Song, U.W. Heinz, Phys. Lett. B 658, 279 (2008)

    Article  ADS  Google Scholar 

  34. H. Song, PhD Thesis, The Ohio State University (August 2009) arXiv:0908.3656

  35. S.A. Bass et al., Prog. Part. Nucl. Phys. 41, 255 (1998)

    Article  ADS  Google Scholar 

  36. M. Bleicher et al., J. Phys. G 25, 1859 (1999)

    Article  ADS  Google Scholar 

  37. X. Zhu, Y. Zhou, H. Xu, H. Song, Phys. Rev. C 95, 044902 (2017)

    Article  ADS  Google Scholar 

  38. H.J. Xu, Z. Li, H. Song, Phys. Rev. C 93, 064905 (2016)

    Article  ADS  Google Scholar 

  39. ALICE Collaboration (B. Abelev et al.), Phys. Rev. C 88, 044910 (2013)

    Article  ADS  Google Scholar 

  40. ALICE Collaboration (H. Beck), arXiv:1502.00848 [nucl-ex]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Zheng.

Additional information

Communicated by F. Gulminelli

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All data generated during this study are contained in this published article and numerical data files are available upon request.]

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, L., Zheng, H. & Kong, R. Centrality and transverse momentum dependencies of hadrons in Pb+Pb collisions at \(\sqrt{s_{NN}} = 5.02\) TeV and Xe+Xe collisions at \(\sqrt{s_{NN}} = 5.44\) TeV from a multi-phase transport model. Eur. Phys. J. A 55, 205 (2019). https://doi.org/10.1140/epja/i2019-12903-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2019-12903-3

Navigation