Skip to main content
Log in

A unified modified couple stress model for size-dependent free vibrations of FG cylindrical microshells based on high-order shear deformation theory

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The aim of present work is to propose a unified modified couple stress-based shear deformable shell model that has capability of analyzing size-dependent free vibrations of functionally graded (FG) cylindrical microshells. In the current model, the classical strain tensors and curvature tensor components are given within the framework of a unified high-order shear deformation theory. The trapezoidal shape factor is taken into account for achieving reasonable stress resultants over thickness and makes the proposed model more accurate for thick shell structures. Various classical boundary conditions of the cylindrical microshells are considered using the admissible functions of the displacements containing a beam modal function. The governing equations associated with free vibrations of microshells are derived using a standard Lagrange method. A few comparisons are conducted and verify that the results from the current model coincide favorably to the ones from three-dimensional elasticity solutions. The comparisons also prove that the proposed model has a sufficient capability of dealing with free vibration problems of the thick functionally graded cylindrical microshells. To the end, the size-dependent free vibrations of an FG cylindrical microshell are investigated. As new results, natural frequencies of the FG microshells with various boundary conditions are tabulated, and the effects of some important parameters on vibration characteristics of FG microshells are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. T. Kiani, R. Dimitri, F. Tornabene, Compos. B Eng. 147, 169 (2018)

    Google Scholar 

  2. N. Wattanasakulpong, A. Chaikittiratana, Aerosp. Sci. Technol. 40, 181 (2015)

    Google Scholar 

  3. A. Wang, H. Chen, Y. Hao, W. Zhang, Results Phys. 9, 550 (2018)

    ADS  Google Scholar 

  4. W. Zhang, Y.X. Hao, J. Yang, Compos. Struct. 94, 1075 (2012)

    Google Scholar 

  5. Q. Wang, D. Shi, Q. Liang, F. Pang, Appl. Math. Model. 46, 227 (2017)

    MathSciNet  Google Scholar 

  6. S. Zghal, A. Frikha, F. Dammak, Compos. B Eng. 150(1), 165 (2018)

    Google Scholar 

  7. A. Frikha, S. Zghal, F. Dammak, Aerosp. Sci. Technol. 78, 438 (2018)

    Google Scholar 

  8. F. Tornabene, N. Fantuzzi, E. Viola, R.C. Batra, Compos. Struct. 119(1), 67 (2015)

    Google Scholar 

  9. F. Tornabene, N. Fantuzzi, M. Bacciocchi, E. Viola, Compos. B Eng. 89(1), 187 (2016)

    Google Scholar 

  10. A.C. Eringen, J. Appl. Phys. 54, 4703 (1983)

    ADS  Google Scholar 

  11. M.E. Gurtin, J. Weissmüller, F. Larché, J. Philos. Mag. A 78(5), 1093 (1998)

    ADS  Google Scholar 

  12. D.C.C. Lam, F. Yang, A.C.M. Chong, J. Wang, P. Tong, J. Mech. Phys. Solids 51(8), 1477 (2003)

    ADS  Google Scholar 

  13. A.R. Hadjesfandiari, G.F. Dargush, Int. J. Solids Struct. 48(18), 2496 (2011)

    Google Scholar 

  14. Y.Q. Wang, C. Liang, J.W. Zu, Eur. Phys. J. Plus 134, 233 (2019)

    Google Scholar 

  15. F.Z. Jouneghani, P.M. Dashtaki, R. Dimitri, M. Bacciocchi, F. Tornabene, Aerosp. Sci. Technol. 73, 129 (2018)

    Google Scholar 

  16. S. Hosseini-Hashemi, F. Sharifpour, M.R. Ilkhani, Int. J. Mech. Sci. 115–116, 501 (2016)

    Google Scholar 

  17. H. Zeighampour, Y.T. Beni, M.B. Dehkordi, Thin Walled Struct. 122, 378 (2018)

    Google Scholar 

  18. H. Zeighampour, M. Shojaeian, J. Braz, Soc. Mech. Sci. Eng. 39, 2789–2800 (2017)

    Google Scholar 

  19. H. Zeighampour, Y.T. Beni, Int. J. Eng. Sci. 78, 27–47 (2014)

    Google Scholar 

  20. H. Rouhi, R. Ansari, M. Darvizeh, Appl. Math. Model. 40(4), 3128–3140 (2016)

    MathSciNet  Google Scholar 

  21. R. Gholami, A. Darvizeh, R. Ansari, F. Sadeghi, Eur. J. Mech. A. Solids 58, 76 (2016)

    ADS  MathSciNet  Google Scholar 

  22. S. Sahmani, R. Ansari, R. Gholami, A. Darvizeh, Compos. B Eng. 51, 44 (2013)

    Google Scholar 

  23. M.R. Ilkhani, R. Nazemnezhad, Eur. J. Mech. A. Solids 77, 103804 (2019)

    ADS  MathSciNet  Google Scholar 

  24. F. Tornabene, Comput. Methods Appl. Mech. Eng. 198, 2911 (2009)

    ADS  Google Scholar 

  25. F. Tornabene, A. Liverani, G. Caligiana, Int. J. Mech. Sci. 53, 446 (2011)

    Google Scholar 

  26. F. Tornabene, J.N. Reddy, J. Indian Inst. Sci. 93(4), 635 (2013)

    MathSciNet  Google Scholar 

  27. S. Trabelsi, A. Frikha, S. Zghal, F. Dammak, Eng. Struct. 178, 444 (2019)

    Google Scholar 

  28. Y. Wang, K. Xie, T. Fu, Acta Astronaut. 151, 603 (2018)

    ADS  Google Scholar 

  29. H. Zeighampour, M. Shojaeian, J. Sandwich Struct. Mater. 21(3), 917 (2019)

    Google Scholar 

  30. S.S. Mirjavadi, M. Forsat, M.R. Barati et al., Eur. Phys. J. Plus 134(5), 214 (2019)

    Google Scholar 

  31. F. Mehralian, Y.T. Beni, R. Ansari, Compos. Struct. 152, 45–61 (2016)

    Google Scholar 

  32. Y.Q. Wang, H.H. Li, Y.F. Zhang, J.W. Zu, Appl. Math. Model. 64, 55–70 (2018)

    MathSciNet  Google Scholar 

  33. B. Zhang, Y. He, D. Liu, L. Shen, J. Lei, Compos. Struct. 119, 578–597 (2015)

    Google Scholar 

  34. Y.T. Beni, F. Mehralian, H. Razavi, Compos. Struct. 120, 65–75 (2015)

    Google Scholar 

  35. H. Zeighampour, Y.T. Beni, Compos. Struct. 179, 124 (2017)

    Google Scholar 

  36. M. Ghadiri, H. SafarPour, J. Therm. Stresses 40(1), 55 (2017)

    Google Scholar 

  37. H. Razavi, A.F. Babadi, Y.T. Beni, Compos. Struct. 160, 1299 (2017)

    Google Scholar 

  38. F. Yang, A.C.M. Chong, D.C.C. Lam, P. Tong, Int. J. Solids Struct. 39, 2731 (2002)

    Google Scholar 

  39. H. Farokhi, M.H. Ghayesh, Int. J. Eng. Sci. 119, 288 (2017)

    Google Scholar 

  40. H. Farokhi, M.H. Ghayesh, Int. J. Eng. Sci. 127, 127 (2018)

    Google Scholar 

  41. H. Farokhi, M.H. Ghayesh, Acta Mech. 230, 851 (2019)

    MathSciNet  Google Scholar 

  42. A. Bhimaraddi, Int. J. Solids Struct. 20(7), 623 (1984)

    Google Scholar 

  43. M.S. Qatu, Int. J. Solids Struct. 36, 2917 (1999)

    Google Scholar 

  44. E. Reissner, Int. J. Solids Struct. 11(5), 569 (1974)

    Google Scholar 

  45. J.N. Reddy, J. Appl. Mech. 51(4), 745 (1984)

    ADS  Google Scholar 

  46. M.M. Najafizadeh, M.R. Isvandzibaei, Acta Mech. 191, 75 (2007)

    Google Scholar 

  47. F.C. Moon, W.S. Steven, Int. J. Non-Linear Mech. 18, 465 (1993)

    Google Scholar 

  48. Y. Wang, D. Wu, Aerosp. Sci. Technol. 66, 83 (2017)

    Google Scholar 

  49. C.B. Sharma, J. Sound Vib. 30, 525 (1973)

    ADS  Google Scholar 

  50. C.T. Loy, K.Y. Lam, Int. J. Mech. Sci. 39(4), 455 (1997)

    Google Scholar 

  51. C.T. Loy, K.Y. Lam, J.N. Reddy, Int. J. Mech. Sci. 41, 309 (1999)

    Google Scholar 

  52. A. Alibeigloo, M. Shaban, Acta Mech. 224, 1415 (2013)

    MathSciNet  Google Scholar 

  53. K.P. Soldatos, V.P. Hadjigeorgiou, J. Sound Vib. 137(3), 369 (1990)

    ADS  Google Scholar 

  54. H. Zeighampour, Y.T. Beni, Arch. Appl. Mech. 85, 539 (2015)

    ADS  Google Scholar 

  55. J.N. Reddy, J. Mech. Phys. Solids 59(11), 2382 (2011)

    ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

The research was funded by the National Natural Science Foundation of China (51976097), the Science Fund for Creative Research Groups of NSFC (51621062), and the China Postdoctoral Science Foundation (2018M641333).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tairan Fu or Wei Zhang.

Appendices

Appendix 1

The matrixes [C] and [A] in Eq. (20):

$$ \left[ {\mathbf{C}} \right] = \left[ {\begin{array}{*{20}c} {\frac{{\partial \xi_{u} }}{\partial x}} & {f\frac{{\partial \xi_{u} }}{\partial x}} & 0 & 0 & { - z\frac{{\partial^{2} \xi_{w} }}{{\partial x^{2} }}} \\ 0 & 0 & {\frac{1}{R}\frac{{\partial \xi_{v} }}{\partial \theta }} & {\frac{f}{R}\frac{{\partial \xi_{v} }}{\partial \theta }} & { - \frac{z}{{R\left( {R + z} \right)}}\frac{{\partial^{2} \xi_{w} }}{{\partial \theta^{2} }} + \frac{{\xi_{w} }}{R + z}} \\ {\frac{1}{R + z}\frac{{\partial \xi_{u} }}{\partial \theta }} & {\frac{f}{R + z}\frac{{\partial \xi_{u} }}{\partial \theta }} & {\left( {\frac{R + z}{R}} \right)\frac{{\partial \xi_{v} }}{\partial x}} & {\left( {\frac{R + z}{R}} \right)f\frac{{\partial \xi_{v} }}{\partial x}} & { - \frac{z}{R}\left( {\frac{2R + z}{R + z}} \right)\frac{{\partial^{2} \xi_{w} }}{\partial x\partial \theta }} \\ 0 & 0 & 0 & {\frac{R + z}{R}f'\xi_{v} } & 0 \\ 0 & {f^{{\prime }} \xi_{u} } & 0 & 0 & 0 \\ \end{array} } \right] $$
(32)
$$ \left[ {\mathbf{A}} \right] = \left[ {\begin{array}{*{20}c} {A_{1} \left( t \right)} & {A_{1} \left( t \right)} & {A_{1} \left( t \right)} & {A_{1} \left( t \right)} & {A_{1} \left( t \right)} \\ \end{array} } \right]^{T} $$
(33)
$$ \left[ {\varvec{\Sigma}} \right] = \left[ {\begin{array}{*{20}c} {Q_{11} } & {Q_{12} } & 0 & 0 & 0 \\ {Q_{12} } & {Q_{22} } & 0 & 0 & 0 \\ 0 & 0 & {Q_{66} } & 0 & 0 \\ 0 & 0 & 0 & {Q_{44} } & 0 \\ 0 & 0 & 0 & 0 & {Q_{55} } \\ \end{array} } \right]. $$
(34)

Appendix 2

The matrix [S] in Eq. (21):

$$ \left[ {\mathbf{S}} \right] = \frac{1}{2}\left[ {\begin{array}{*{20}c} 0 & 0 & { - \frac{2}{R}\frac{{\partial \xi_{v} }}{\partial x}} & { - \left( {\frac{2f}{R} + \left( {1 + \frac{z}{R}} \right)f'} \right)\frac{{\partial \xi_{v} }}{\partial x}} & {\frac{2}{R}\frac{{\partial^{2} \xi_{w} }}{\partial x\partial \theta }} \\ { - \frac{1}{{\left( {R + z} \right)^{2} }}\frac{{\partial \xi_{u} }}{\partial \theta }} & {\left( {\frac{{f^{{\prime }} }}{R + z} - \frac{f}{{\left( {R + z} \right)^{2} }}} \right)\frac{{\partial \xi_{u} }}{\partial \theta }} & {\frac{1}{R}\frac{{\partial \xi_{v} }}{\partial x}} & {\frac{f}{R}\frac{{\partial \xi_{v} }}{\partial x}} & { - \left( {\frac{1}{R} + \frac{R}{{\left( {R + z} \right)^{2} }}} \right)\frac{{\partial^{2} \xi_{w} }}{\partial x\partial \theta }} \\ {\frac{1}{{\left( {R + z} \right)^{2} }}\frac{{\partial \xi_{u} }}{\partial \theta }} & {\left( {\frac{f}{{\left( {R + z} \right)^{2} }} - \frac{{f^{{\prime }} }}{R + z}} \right)\frac{{\partial \xi_{u} }}{\partial \theta }} & {\frac{1}{R}\frac{{\partial \xi_{v} }}{\partial x}} & {\left( {\frac{R + z}{R}f^{{\prime }} + \frac{1}{R}f} \right)\frac{{\partial \xi_{v} }}{\partial x}} & { - \frac{{z\left( {2R + z} \right)}}{{R\left( {R + z} \right)^{2} }}\frac{{\partial^{2} \xi_{w} }}{\partial x\partial \theta }} \\ 0 & {\frac{{f^{'} }}{2}\frac{{\partial \xi_{u} }}{\partial x}} & { - \frac{1}{{R\left( {R + z} \right)}}\frac{{\partial \xi_{v} }}{\partial \theta }} & { - \left( {\frac{1}{{R\left( {R + z} \right)}}f + \frac{1}{2R}f^{{\prime }} } \right)\frac{{\partial \xi_{v} }}{\partial \theta }} & { - \frac{{\partial^{2} \xi_{w} }}{{\partial x^{2} }} + \frac{1}{{R\left( {R + z} \right)}}\frac{{\partial^{2} \xi_{w} }}{{\partial \theta^{2} }}} \\ { - \frac{1}{{2\left( {R + z} \right)}}\frac{{\partial^{2} \xi_{u} }}{\partial x\partial \theta }} & { - \frac{f}{{2\left( {R + z} \right)}}\frac{{\partial^{2} \xi_{u} }}{\partial x\partial \theta }} & {\frac{R + z}{2R}\frac{{\partial^{2} \xi_{v} }}{{\partial x^{2} }}} & {\frac{R + z}{2R}f\frac{{\partial^{2} \xi_{v} }}{{\partial x^{2} }} - \frac{1}{2}\left( {f^{{\prime \prime }} + \frac{z}{R}f^{{\prime \prime }} + \frac{3}{R}f^{{\prime }} } \right)\xi_{v} } & { - \frac{{z^{2} }}{{2R\left( {R + z} \right)}}\frac{{\partial^{3} \xi_{w} }}{{\partial x^{2} \partial \theta }}} \\ { - \frac{1}{{2\left( {R + z} \right)^{2} }}\frac{{\partial^{2} \xi_{u} }}{{\partial \theta^{2} }}} & {\frac{1}{2}\left( {f'' - \frac{{f^{{\prime }} }}{R + z}} \right)\xi_{u} - \frac{f}{{2\left( {R + z} \right)^{2} }}\frac{{\partial^{2} \xi_{u} }}{{\partial \theta^{2} }}} & {\frac{1}{2R}\frac{{\partial^{2} \xi_{v} }}{\partial x\partial \theta }} & {\frac{f}{2R}\frac{{\partial^{2} \xi_{v} }}{\partial x\partial \theta }} & {\frac{1}{R + z}\frac{{\partial \xi_{w} }}{\partial x} - \frac{{z^{2} }}{{2R\left( {R + z} \right)^{2} }}\frac{{\partial^{3} \xi_{w} }}{{\partial x\partial \theta^{2} }}} \\ \end{array} } \right] $$
(35)
$$ \left[ {\varvec{\Xi}} \right] = 2\mu \left( z \right)l^{2} {\mathbf{diag}}\left( {\begin{array}{*{20}c} {1,} & {1,} & {1,} & {2,} & {2,} & 2 \\ \end{array} } \right). $$
(36)

Appendix 3

The matrix [M0] in Eq. (24):

$$ \left[ {{\mathbf{M}}_{{\mathbf{0}}} } \right] = \left[ {\begin{array}{*{20}c} {\xi_{u}^{2} } & {f\xi_{u}^{2} } & 0 & 0 & { - z\xi_{u} \frac{{\partial \xi_{w} }}{\partial x}} \\ {f\xi_{u}^{2} } & {\left( {f\xi_{u} } \right)^{2} } & 0 & 0 & { - zf\xi_{u} \frac{{\partial \xi_{w} }}{\partial x}} \\ 0 & 0 & {\left( {\frac{R + z}{R}\xi_{v} } \right)^{2} } & {f\left( {\frac{R + z}{R}\xi_{v} } \right)^{2} } & { - \frac{{\left( {R + z} \right)z}}{{R^{2} }}\xi_{v} \frac{{\partial \xi_{w} }}{\partial \theta }} \\ 0 & 0 & {f\left( {\frac{R + z}{R}\xi_{v} } \right)^{2} } & {\left( {\frac{R + z}{R}f\xi_{v} } \right)^{2} } & { - \frac{{\left( {R + z} \right)z}}{{R^{2} }}f\xi_{v} \frac{{\partial \xi_{w} }}{\partial \theta }} \\ { - z\xi_{u} \frac{{\partial \xi_{w} }}{\partial x}} & { - zf\xi_{u} \frac{{\partial \xi_{w} }}{\partial x}} & { - \frac{{\left( {R + z} \right)z}}{{R^{2} }}\xi_{v} \frac{{\partial \xi_{w} }}{\partial \theta }} & { - \frac{{\left( {R + z} \right)z}}{{R^{2} }}f\xi_{v} \frac{{\partial \xi_{w} }}{\partial \theta }} & {\left( {z\frac{{\partial \xi_{w} }}{\partial x}} \right)^{2} + \left( {\frac{z}{R}\frac{{\partial \xi_{w} }}{\partial \theta }} \right)^{2} + \left( {\xi_{w} } \right)^{2} } \\ \end{array} } \right]. $$
(37)

Appendix 4

The matrix [K] and [M] in Eq. (28):

$$ \left[ {\mathbf{K}} \right] = \int\limits_{0}^{L} {\int\limits_{0}^{2\pi } {\int\limits_{ - h/2}^{h/2} {\left\{ {\left[ {\mathbf{C}} \right]^{\text{T}} \left[ {\varvec{\Sigma}} \right]\left[ {\mathbf{C}} \right] + \left[ {\mathbf{S}} \right]^{\text{T}} \left[ {\varvec{\Xi}} \right]\left[ {\mathbf{S}} \right]} \right\}\left( {1 + \frac{z}{R}} \right)R{\text{d}}z{\text{d}}\theta {\text{d}}x} } } $$
(38)
$$ \left[ {\mathbf{M}} \right] = \int\limits_{0}^{L} {\int\limits_{0}^{2\pi } {\int\limits_{ - h/2}^{h/2} {\left\{ {\rho \left( z \right)\left[ {{\mathbf{M}}_{{\mathbf{0}}} } \right]} \right\}\left( {1 + \frac{z}{R}} \right)R{\text{d}}z{\text{d}}\theta {\text{d}}x} } } . $$
(39)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Xie, K., Fu, T. et al. A unified modified couple stress model for size-dependent free vibrations of FG cylindrical microshells based on high-order shear deformation theory. Eur. Phys. J. Plus 135, 71 (2020). https://doi.org/10.1140/epjp/s13360-019-00012-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-019-00012-3

Navigation