Skip to main content
Log in

Sensitivity comparison of surface plasmon resonance (SPR) and magneto-optic SPR biosensors

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

Sensitivity of a biosensor is one of the most important parameters that determines its performance. It depends on many factors, such as excitation wavelength of incident optical radiation (\( \lambda\) , composition, type, and thickness of the ferromagnetic Co layer ( \( t_{\rm Co}\) , plasmonic Au, and high refractory metal, Ti, involved, and sensing/excitation configuration. In this paper, both the surface plasmon resonance (SPR at the magnetic field, H = 0 and magneto-optic SPR (MOSPR at H sensitivity of the sensors have been theoretically calculated in the visible wavelength regime using air-helium media as probing samples in the Kretschmann configuration, and their performances are compared side by side. The calculated MOSPR sensitivity of \( 1.25 \times 10^5\%\) /RIU (refractive index unit) at \( \lambda = 632.8\) nm is almost 12.5× larger as compared to the SPR sensitivity of \( 1.0 \times 10^4\%\) /RIU for the same geometry, excitation condition, and probing media. Likewise, the MOSPR sensitivity of \( 1.25 \times 10^5\%\) /RIU at \( \lambda\) = 632.8 nm is almost 10× larger as compared to the MOSPR sensitivity of \( 1.25 \times 10^4\%\) /RIU at \( \lambda\) = 515 nm for the same geometry and probing media. On decreasing the \( t_{\rm Co}\) , the sensitivity of the MOSPR sensor is further increased by almost 3× , from \( 1.25 \times 10^5\%\) /RIU at \( t_{\rm Co} = 8\) nm to \( 3.7 \times 10^5\%\) /RIU at \( t_{\rm Co} = 4\) nm. The sensitivity can be further improved by additional optimization of the material used and sensor configuration employed for detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Rizal, V. Belotelov, D. Ignatyeva, A.K. Zvezdin, S. Pisana, Condens. Matter 4, 50 (2019)

    Article  Google Scholar 

  2. C. Rizal, IEEE Trans. Magn. 54, 10 (2018)

    Article  Google Scholar 

  3. G. Pellegrini, G. Mattei, Plasmonics 9, 6 (2014)

    Article  Google Scholar 

  4. D.O. Ignatyeva, G.A. Knyazev, P.O. Kapralov, G. Dietler, S.K. Sekatskii, V.I. Belotelov, Sci. Rep. 6, 28077 (2016)

    Article  ADS  Google Scholar 

  5. E.A.F. Vila et al., IEEE Trans. Magn. 44, 11 (2008)

    Google Scholar 

  6. K. Lodewijks et al., Nano Lett. 14, 12 (2014)

    Article  Google Scholar 

  7. C. Rizal, B. Niraula, H. Lee, J. Nanomed. Res. 3, 3 (2016)

    Article  Google Scholar 

  8. M. Fernández-Perea et al., Phys. Rev. Lett. 111, 027404 (2013)

    Article  ADS  Google Scholar 

  9. C. Rizal, S. Pisana, I. Hrvoic, E. Fullerton, J. Phys. Commun. 2, 2 (2018)

    Article  Google Scholar 

  10. W.M. Robertson, E. Fullerton, J. Opt. Soc. Am. B 6, 8 (1989)

    Article  Google Scholar 

  11. A. Otto, Z. Phys. A 216, 4 (1968)

    Article  Google Scholar 

  12. K. Lin, Y. Lu, J. Chen, R. Zheng, P. Wang, H. Ming, Opt. Express 16, 23 (2008)

    ADS  Google Scholar 

  13. C. Rizal, S. Pisana, I. Hrvoic, MDPI Biomed. Photon. Adv. 5, 3 (2018)

    Google Scholar 

  14. C. Rizal, Ferromagnetic Hybrid Nanostructure for Potential Clinical Applications: Theory, Design, Fabrication, Measurement, Data Analysis, & Characterization (LAMBERT Academic Publishing GmbH & Co., 2018)

  15. http://www.schott.com

  16. P. Johnson, R. Christy, Phys. Rev. B 9, 12 (1974)

    Article  Google Scholar 

  17. A.D. Rakić, A.B. Djurisić, J.M. Elazar, M.L. Majewski, Appl. Opt. 37, 22 (1998)

    Article  Google Scholar 

  18. J. González Díaz, B. Sepúlveda, A. GarcíaMartín, G. Armelles, Appl. Phys. Lett. 97, 4 (2010)

    Article  Google Scholar 

  19. C. Cuthbertson, M. Cuthbertson, Proc. R. Soc. London A 135, 826 (1932)

    Article  Google Scholar 

  20. P.E. Ciddor, Appl. Opt. 35, 9 (1996)

    Article  Google Scholar 

  21. K.-H. Yoon et al., Investig. Radiol. 47, 12 (2012)

    Article  Google Scholar 

  22. M.H.H. Hasib, J.N. Nur, C. Rizal, K.N. Shushama, Condens. Matter 4, 49 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Conrad Rizal.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rizal, C., Belotelov, V. Sensitivity comparison of surface plasmon resonance (SPR) and magneto-optic SPR biosensors. Eur. Phys. J. Plus 134, 435 (2019). https://doi.org/10.1140/epjp/i2019-12819-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2019-12819-3

Navigation